首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

2.
3.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

4.
5.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

6.
Hepatic parenchymal cells contribute to the clearance of circulating tissue-type plasminogen activator (t-PA) in vivo. The hepatocyte extracellular matrix is interposed between the endothelial-lined sinusoids and the parenchymal cell surface and thus may influence t-PA clearance. To test this hypothesis, the well differentiated human hepatoma cell line HepG2 was used to characterize the role of extracellular matrix in t-PA clearance in vitro. Previous studies with these cells demonstrated their capacity for specific catabolism of t-PA in a system modulated by plasminogen activator inhibitor type 1 (PAI-1). In the present study the extracellular matrix growth substratum of HepG2 cells is shown to contain active PAI-1. PAI-1 is distributed in a punctuate pattern throughout the substratum. Components of the substratum confer stability to active PAI-1 for intervals of at least 24 h. Exposing substratum to 125I-t-PA leads rapidly to the formation and release of a sodium dodecyl sulfate-stable 95-kDa 125I-t-PA.PAI-1 complex. In comparison, cell monolayers have the additional capacity for specific binding of the complex. However, PAI-1 is not detected at the surface of HepG2 cells in suspension, suggesting that 125I-t-PA.PAI-1 complexes form in substratum and subsequently bind to cells. Specific binding of performed 125I-t-PA.PAI-1, but not 125I-t-PA, was demonstrated for HepG2 cells in suspension. These results suggest that components of extracellular matrix participate in the clearance of t-PA by hepatocytes.  相似文献   

7.
Highly purified plasminogen-activator inhibitors of type 1 (PAI-1) and type 2 (PAI-2), low-Mr form, were compared with respect to their kinetics of inhibition of tissue-type (t-PA) and urokinase-type plasminogen activator (u-PA). The time course of inhibition of plasminogen activator was studied under second-order or pseudo-first-order conditions. Residual enzyme activity was measured by the initial rate of hydrolysis of a chromogenic t-PA or u-PA substrate or by an immunosorbent assay for t-PA activity. PAI-1 rapidly reacted with single-chain t-PA as well as with two-chain forms of t-PA and u-PA. The second-order rate constant k for inhibition of single-chain t-PA (5.5 x 10(6) M-1 s-1) was about three times lower than k for inhibition of the two-chain activators. PAI-2 reacted slowly with single-chain t-PA, k = 4.6 x 10(3) M-1 s-1. The association rate was 26 times higher with two-chain t-PA and 435 times higher with two-chain u-PA. The k values for inhibition of single-chain t-PA, two-chain t-PA and two-chain u-PA were respectively, 1200, 150 and 8.5 times higher with PAI-1 than with PAI-2. The removal of the epidermal growth factor domain and the kringle domain from two-chain u-PA did not affect the kinetics of inhibition of the enzyme, suggesting that the C-terminal proteinase part of u-PA (B chain) is responsible for both the primary and the secondary interactions with PAI-1 and PAI-2. The k values for inhibition of single-chain t-PA and endogenous t-PA in plasma by PAI-1 or PAI-2 were identical indicating that t-PA in blood consists mainly in its single-chain form.  相似文献   

8.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

9.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

10.
Cheng M  Li Y  Wu J  Nie Y  Li L  Liu X  Charoude HN  Chen H 《Cytokine》2008,41(1):9-15
Interleukin-8 (IL-8), a member of the CXC chemokine family, plays an important role in the modulation of multiple biological functions in endothelial cells containing the receptors CXCR1 and CXCR2. It has previously been shown that IL-8 directly enhances endothelial cell survival, and stimulates the production of matrix metalloproteinases, which in turn regulates angiogenesis. However, its role in the regulation of the production of vasoactive substances in endothelial cells is less well defined. In this study, we investigate the effects of IL-8 on the proliferation of human umbilical vein endothelial cells (HUVECs). In addition, we also study the effects of IL-8 on the production of vasodilator, vasoconstrictor and fibrinolytic factors in these cells. The results show that recombinant IL-8 (50-200ng/ml) induces neither HUVEC proliferation nor nitric oxide (NO) release. However, it significantly increases the production of endothelin-1 (ET-1) in a concentration-dependent manner. Furthermore, incubation of endothelial cells with IL-8 (200ng/ml) up-regulates the plasminogen activator inhibitor-1 (PAI-1) in HUVECs, while it down-regulates the tissue plasminogen activator (t-PA). These findings suggest that IL-8 offsets the balance between endothelial vasoconstrictors and vasodilators. Furthermore, IL-8 also leads to an imbalance between PAI-1 and t-PA, which causes the ECs to become procoagulative and hypofibrinolytic.  相似文献   

11.
12.
13.
The interactions between exogenously added tissue-type plasminogen activator (t-PA) and the active form of type 1 plasminogen activator inhibitor (PAI-1) produced by and present in cultured human umbilical vein endothelial cells (HUVECs) were investigated. Immunoblotting analysis of the conditioned media obtained from monolayers of HUVECs treated with increasing concentrations of t-PA (less than or equal to 10 micrograms/ml) revealed a dose-dependent formation of both t-PA/PAI-1 complexes, and of a 42,000-Mr cleaved or modified form of the inhibitor. Immunoradiometric assays indicated that t-PA treatment resulted in a fourfold increase in PAI-1 antigen present in the conditioned media. This increase did not result from the release of PAI-1 from intracellular stores, but rather reflected a t-PA-dependent decrease in the PAI-1 content of the Triton X-100 insoluble extracellular matrix (ECM). Although the rate of t-PA-mediated release of PAI-1 was increased by the removal of the monolayer, similar quantities of PAI-1 were removed in the presence or absence of the cells. These results suggest that the cells only represent a semipermeable barrier between ECM-associated PAI-1 and exogenous t-PA. Treatment of HUVECs with t-PA (1 microgram/ml, 2 h) to deplete the ECM of PAI-1 did not affect the subsequent rate of PAI-1 production and deposition into the ECM. Immunogold electron microscopy of HUVECs not only confirmed the location of PAI-1 primarily in the region between the culture substratum and ventral cell surface but failed to demonstrate significant (less than 1%) PAI-1 on the cell surface. Thus, the majority of PAI-1 associated with cultured HUVEC monolayers is present under the cells in the ECM and is accessible to solution-phase t-PA.  相似文献   

14.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

15.
We have shown that synthetic peptides containing the amino acid sequence Asn-Arg-Arg-Leu, derived from the amino acid sequence of the inner loop of the kringle-2 domain of tissue-type plasminogen activator (tPA), inhibited complex formation between two chain tPA and plasminogen activator inhibitor-1 (PAI-1) by binding to PAI-1. This binding was reversible and was inhibited by not only tPA but also by enzymatically inactive tPA. Quantitative analyses of the interaction of PAI-1 with the peptide containing the Asn-Arg-Arg-Leu sequence indicated that the PAI-1 binding site residues in the inner loop of the kringle-2 domain and is preferentially expressed in two chain tPA.  相似文献   

16.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

17.
18.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

19.
重组组织型纤溶酶原激活剂 ( rt PA)经肝素处理后与未经处理的 rt PA比较 ,结果显示 ,rt PA在体外的溶纤活性提高 5 0 %~ 90 % ,在兔体内的半衰期延长 1 min,同时也提高了 rt PA对热的稳定性  相似文献   

20.
Plasminogen activator inhibitor type 1 (PAI-1) is a major physiologic regulator of the fibrinolytic system and has recently gained recognition as a modulator of inflammation and atherosclerosis. PAI-1 exhibits circadian rhythmicity in its expression, peaking in the early morning, which is associated with increased risk for cardiovascular events. However, the mechanisms that determine PAI-1 circadian rhythmicity remain poorly understood. We discovered that the orphan nuclear receptor Rev-erb alpha, a core component of the circadian loop, represses human PAI-1 gene expression through two Rev-erb alpha binding sites in the PAI-1 promoter. Mutations of these sites, as well as RNA interference targeting endogenous Rev-erb alpha and its corepressors, led to increased expression of the PAI-1 gene. Furthermore, glycogen synthase kinase 3beta (GSK3beta) contributes to pai-1 repression by phosphorylating and stabilizing Rev-erb alpha protein, which can be blocked by lithium. Interestingly, serum shock generated circadian oscillations in PAI-1 mRNA in NIH3T3 cells, suggesting that PAI-1 is a direct output gene of the circadian loop. Ectopic expression of a stabilized form of Rev-erb alpha that mimics GSK3beta phosphorylation dramatically dampened PAI-1 circadian oscillations. Thus, our results suggest that Rev-erb alpha is a major determinant of the circadian PAI-1 expression and a potential modulator of the morning susceptibility to myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号