首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PDZ domains are widespread protein modules that commonly recognize C-terminal sequences of target proteins and help to organize macromolecular signaling complexes. These sequences usually bind in an extended conformation to relatively shallow grooves formed between a beta-strand and an alpha-helix in the corresponding PDZ domains. Because of this binding mode, many PDZ domains recognize primarily the C-terminal and the antepenultimate side-chains of the target protein, which commonly conform to motifs that have been categorized into different classes. However, an increasing number of PDZ domains have been found to exhibit unusual specificities. These include the PDZ domain of RIMs, which are large multidomain proteins that regulate neurotransmitter release and help to organize presynaptic active zones. The RIM PDZ domain binds to the C-terminal sequence of ELKS with a unique specificity that involves each of the four ELKS C-terminal residues. To elucidate the structural basis for this specificity, we have determined the 3D structure in solution of an RIM/ELKS C-terminal peptide complex using NMR spectroscopy. The structure shows that the RIM PDZ domain contains an unusually deep and narrow peptide-binding groove with an exquisite shape complementarity to the four ELKS C-terminal residues in their bound conformation. This groove is formed, in part, by a set of side-chains that is conserved selectively in RIM PDZ domains and that hence determines, at least in part, their unique specificity.  相似文献   

2.
Syntenin蛋白是在原核生物及真核生物中广泛存在的一类胞内衔接蛋白(adaptor proteins). Syntenin由N端结构域(N-terminal domain,NTD)、两个串联的PDZ结构域(postsynaptic density protein, disc large and zonula occludens, PDZ)和C端结构域(C-terminal domain,CTD)组成,在生物进化过程中相对保守. Syntenin蛋白的PDZ结构域可与不同膜受体C端的PDZ结合基序(PDZ-binding motif,PBM)特异性结合, PDZ结构域结合受体的多样性导致了syntenin功能的多样性. 本文综述了syntenin蛋白的发现与分布及其结构特征,对syntenin在肿瘤转移、细胞质膜蛋白组装、参与动物免疫等领域的研究成果进行了较为详细的综述,同时介绍了syntenin在参与动物胚胎发育调控、血管生成和轴突生长等方面的研究进展.  相似文献   

3.
PDZ domain proteins play critical roles in binding, clustering and subcellular targeting of membrane receptors and ion channels. PDZ domains in multi-PDZ proteins often are arranged in groups with highly conserved spacing and intervening sequences; however, the functional significance of such tandem arrangements of PDZs is unclear. We have solved the three-dimensional structure of the first two PDZ domains of postsynaptic density protein-95 (PSD-95 PDZ1 and PDZ2), which are closely linked to each other in the PSD-95 family of scaffold proteins. The two PDZs have limited freedom of rotation and their C-terminal peptide-binding grooves are aligned with each other with an orientation preference for binding to pairs of C termini extending in the same direction. Increasing the spacing between PDZ1 and PDZ2 resulted in decreased binding between PDZ12 and its dimeric targets. The same mutation impaired the functional ability of PSD-95 to cluster Kv1.4 potassium channels in heterologous cells. The data presented provide a molecular basis for preferential binding of PSD-95 to multimeric membrane proteins with appropriate C-terminal sequences.  相似文献   

4.
The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.  相似文献   

5.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

6.
PTEN is a tumor suppressor protein that functions, in large part, by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate and by doing so antagonizing the action of phosphoinositide 3-kinase. PTEN structural domains include an N-terminal phosphatase domain, a lipid-binding C2 domain, and a 50-amino acid C-terminal tail that contains a PDZ binding sequence. We showed previously that phosphorylation of the PTEN tail negatively regulates PTEN activity. We now show that phosphorylated PTEN exists in a monomeric "closed" conformation and has low affinity for PDZ domain-containing proteins. Conversely, when unphosphorylated, PTEN is in an "open" conformation, is recruited into a high molecular weight complex (PTEN-associated complex), and strongly interacts with PDZ-containing proteins such as MAGI-2. As a consequence, when compared with wild-type PTEN, the phosphorylation-deficient mutant form of PTEN strongly cooperates with MAGI-2 to block Akt activation. These results indicate that phosphorylation of the PTEN tail causes a conformational change that results in the masking of the PDZ binding domain. Consequently, the ability of PTEN to bind to PDZ domain-containing proteins is reduced dramatically. These data suggest that phosphorylation of the PTEN tail suppresses the activity of PTEN by controlling the recruitment of PTEN into the PTEN-associated complex.  相似文献   

7.
Pegan S  Tan J  Huang A  Slesinger PA  Riek R  Choe S 《Biochemistry》2007,46(18):5315-5322
Control of surface expression of inwardly rectifying potassium (Kir) channels is important for regulating membrane excitability. Kir2 channels have been shown to interact directly with PDZ-containing proteins in the postsynaptic density (PSD). These scaffold proteins, such as PSD95, bind to Kir2.1 channels via a PDZ-binding motif (T/S-x-Phi) in the C-terminal tail (SEI428). By utilizing a multidimensional solution NMR approach, we show that the previously unresolved structure of Kir2.1 tail (residues 372-428) is highly flexible. Using in vitro binding assays, we determined that shortening the flexible tail of Kir2.1 preceding the C-terminal region (residues 414-428) does not significantly disrupt PDZ binding. We also investigated which amino acids in the Kir2.1 tail associated with PSD95 PDZ1,2 by NMR spectroscopy, revealing that a stretch of 12 C-terminal amino acids is involved in interaction with both PDZ domains (residues 417-428). Deletion of the 11 amino acids preceding the C-terminal tail, Delta414-424, completely disrupts binding to PSD95 PDZ1,2. Therefore, the molecular interfaces formed between PDZ domains and Kir2.1 tail involve regions outside the previously identified binding motif (SEI428) and may be important for additional channel-specific interactions with associating PDZ-containing proteins.  相似文献   

8.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

9.
Neuronal nitric oxide synthase (nNOS) is targeted to the cell membrane via interactions of its extended PDZ domain with PDZ domains of membrane-associated proteins including PSD-95 and alpha1-syntrophin. The formation of heterodimers between the nNOS PDZ domain and the PDZ domains of nNOS-binding proteins requires a stretch of continuous amino-acid residues C-terminal to the canonical nNOS PDZ domain. In this work, we show that a 27-residue peptide comprising the C-terminal extension of the extended nNOS PDZ domain is capable of binding to PSD-95. The structure of the 27-residue peptide in aqueous solution was determined using multidimensional NMR-spectroscopic techniques. The free peptide adopts a native-like beta-hairpin finger structure in aqueous solution. The results indicate that the C-terminal extension peptide of the nNOS PDZ domain may represent a relatively independent structural unit in the mediation of the interaction between nNOS and PDZ domain-containing proteins including PSD-95 and alpha1-syntrophin.  相似文献   

10.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

11.
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.  相似文献   

12.
The neuronal adaptor protein X11alpha participates in the formation of multiprotein complexes and intracellular trafficking. It contains a series of discrete protein-protein interaction domains including two contiguous C-terminal PDZ domains. We used the yeast two-hybrid system to screen for proteins that interact with the PDZ domains of human X11alpha, and we isolated a clone encoding domains II and III of the copper chaperone for Cu,Zn-superoxide dismutase-1 (CCS). The X11alpha/CCS interaction was confirmed in coimmunoprecipitation studies plus glutathione S-transferase fusion protein pull-down assays and was shown to be mediated via PDZ2 of X11alpha and a sequence within the carboxyl terminus of domain III of CCS. CCS delivers the copper cofactor to the antioxidant superoxide dismutase-1 (SOD1) enzyme and is required for its activity. Overexpression of X11alpha inhibited SOD1 activity in transfected Chinese hamster ovary cells which suggests that X11alpha binding to CCS is inhibitory to SOD1 activation. X11alpha also interacts with another copper-binding protein found in neurons, the Alzheimer's disease amyloid precursor protein. Thus, X11alpha may participate in copper homeostasis within neurons.  相似文献   

13.
Tamalin is a scaffold protein that comprises multiple protein-interacting domains, including a 95-kDa postsynaptic density protein (PSD-95)/discs-large/ZO-1 (PDZ) domain, a leucine-zipper region, and a carboxyl-terminal PDZ binding motif. Tamalin forms a complex with metabotropic glutamate receptors and guanine nucleotide exchange factor cytohesins and promotes intracellular trafficking and cell surface expression of group 1 metabotropic glutamate receptors. In the present study, using several different approaches we have shown that tamalin interacts with multiple neuronal proteins through its distinct protein-binding domains. The PDZ domain of tamalin binds to the PDZ binding motifs of SAP90/PSD-95-associated protein and tamalin itself, whereas the PDZ binding motif of tamalin is capable of interacting with the PDZ domain of S-SCAM. In addition, tamalin forms a complex with PSD-95 and Mint2/X11beta/X11L by mechanisms different from the PDZ-mediated interaction. Tamalin has the ability to assemble with these proteins in vivo; their protein complex with tamalin was verified by coimmunoprecipitation of rat brain lysates. Interestingly, the distinct protein-interacting domains of tamalin are evolutionarily conserved, and mRNA expression is developmentally up-regulated at the postnatal period. The results indicate that tamalin exists as a key element that forms a protein complex with multiple postsynaptic and protein-trafficking scaffold proteins.  相似文献   

14.
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.  相似文献   

15.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

16.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

17.
Loss of cell polarity is one of the initial alterations in the development of human epithelial cancers. Na(+)/H(+) exchanger regulatory factor (NHERF) homologous adaptors 1 and 2 are membrane-associated proteins composed of two amino (N)-terminal PDZ domains and an ezrin-radixin-moesin (ERM)-binding (EB) carboxyl (C)-terminal region. We describe here an intramolecular conformation of NHERF1/EBP50 (ERM-binding phosphoprotein 50) in which the C-terminal EB region binds to the PDZ2 domain. This novel head-to-tail conformation masked the interaction of both PDZ domains with PDZ domain-specific ligands, such as PTEN and beta-catenin. An EB region composite structure comprising an alpha-helix ending in a PDZ-binding motif imparted opposite effects to NHERF1 associations, mediating binding to ERM proteins and inhibiting binding of PDZ domain ligands. The PDZ domain inhibition was released by prior association of ezrin with the EB region, a condition that occurs in vivo and likely disrupts NHERF1 head-to-tail interaction. In contrast, NHERF2 did not present a regulatory mechanism for protein complex formation. Functionally, NHERF1 is required to organize complexes at the apical membranes of polarized epithelial cells. The regulation of NHERF1 interactions at the apical membrane thus appears to be a dynamic process that is important for maintaining epithelial-tissue integrity.  相似文献   

18.
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of “high-risk” human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.  相似文献   

19.
The interaction of the glutamate receptor subunits 2 and 3 (GluR2/3) with multi-PDZ domain glutamate receptor-interacting protein (GRIP) is important for the synaptic trafficking and clustering of the receptors. Binding of GluR2/3 to GRIP requires both the fourth and fifth PDZ domains (PDZ4 and PDZ5) to be covalently linked, although only one PDZ domain is directly involved in binding to the receptor tail. To elucidate the molecular basis of this mode of PDZ domain-mediated target recognition, we solved the solution structures of the PDZ45 tandem and the isolated PDZ4 of GRIP. The two PDZ domains form a compact structure with a fixed interdomain orientation. The interdomain packing and the stable folding of both PDZ domains require a short stretch of amino acids N-terminal to PDZ4 and a conserved linker connecting PDZ4 and PDZ5. PDZ4 contains a deformed aB-bB groove that is unlikely to bind to carboxyl peptides. Instead, the domain stabilizes the structure of PDZ5.  相似文献   

20.
PDZ domains are among the most abundant protein modules in the known genomes. Their main function is to provide scaffolds for membrane-associated protein complexes by binding to the cytosolic, C-terminal fragments of receptors, channels, and other integral membrane proteins. Here, using both heteronuclear NMR and single crystal X-ray diffraction, we show how peptides with different sequences, including those corresponding to the C-termini of syndecan, neurexin, and ephrin B, can simultaneously bind to both PDZ domains of the scaffolding protein syntenin. The PDZ2 domain binds these peptides in the canonical fashion, and an induced fit mechanism allows for the accommodation of a range of side chains in the P(0) and P(-)(2) positions. However, binding to the PDZ1 domain requires that the target peptide assume a noncanonical conformation. These data help explain how syntenin, and perhaps other PDZ-containing proteins, may preferentially bind to dimeric and clustered targets, and provide a mechanistic explanation for the previously reported cooperative ligand binding by syntenin's two PDZ domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号