首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

2.
Whereas brefeldin A (BFA) protected a number of cell lines against the protein toxin ricin, two of the cell lines tested were not protected but rather sensitized to ricin by BFA. EM studies revealed that upon addition of BFA the Golgi stacks in cells which were protected against the toxin rapidly transformed into a characteristic tubulo-vesicular reticulum connected to the endoplasmic reticulum, and subcellular fractionation experiments showed that galactosyl transferase disappeared from the Golgi fractions where it was normally located. EM and subcellular fractionation also indicated that in contrast to the Golgi stacks, the trans-Golgi network (TGN) remained intact and that internalized ricin was still localized in the TGN both when BFA was added before and after the toxin. Thus, BFA does not prevent fusion of ricin-containing vesicles with the TGN, and unlike resident proteins in Golgi stacks, ricin is not transported back to ER upon treatment of cells with BFA. Two kidney epithelial cell lines, MDCK and PtK2, were not protected against ricin by BFA, and EM studies of MDCK cells revealed that BFA did not alter the morphology of the Golgi complex in these cells. Also, subcellular fractionation revealed that, in contrast to the other cell types tested, the localization of galactosyl transferase in the gradients was not affected by BFA treatment. The data show that there is a correlation between BFA-induced disassembly of the Golgi stacks and protection against ricin, and they demonstrate that the structural organization of the Golgi apparatus is affected by BFA to different extents in various cell lines.  相似文献   

3.
The fungal drug brefeldin A (BFA) has recently been found to induce a redistribution of medial- and cis-Golgi components to the endoplasmic reticulum (ER), raising the possibility of the existence of a retrograde pathway from the Golgi complex to the ER. Here, we demonstrate a BFA-induced reversible rearrangement of the trans-Golgi membrane protein galactosyltransferase (Gal-T) to the ER in HeLa cells. With immunofluorescence microscopy we have shown that BFA first caused a rapid change of Gal-T immunolabelling from a normal Golgi complex pattern to long and slender structures emanating from the cell centre and co-localizing with tubulin. Then immunofluorescence became ER-like. This effect was not dependent on ongoing protein synthesis and was reversed to normal within 120 min after removal of the drug. Restoration of the Golgi complex after removal of brefeldin A was energy-dependent but not mediated by microtubules nor dependent on protein synthesis. BFA-induced backflow of Gal-T was inhibited by nocodazole, a microtubule-disrupting agent. Immunoelectron microscopy showed that BFA treatment resulted in the fusion of Gal-T-containing vesicles with the ER. Furthermore, sucrose gradient centrifugation showed a significant shift in density of mature Gal-T polypeptides upon BFA treatment: about 40% of the enzyme migrated from its original density (1.13 g/ml) to the density of rough ER (1.19 g/ml). Thus, BFA caused microtubule-dependent vesicular backflow from a trans-Golgi component to the ER followed by fusion of the Golgi-derived vesicles with the ER.  相似文献   

4.
The small-molecule inhibitor Exo2 {4-hydroxy-3-methoxy-(5,6,7,8-tetrahydrol[1]benzothieno[2,3-d]pyrimidin-4-yl)hydraz-one benzaldehyde} has been reported to disrupt the Golgi apparatus completely and to stimulate Golgi-ER (endoplasmic reticulum) fusion in mammalian cells, akin to the well-characterized fungal toxin BFA (brefeldin A). It has also been reported that Exo2 does not affect the integrity of the TGN (trans-Golgi network), or the direct retrograde trafficking of the glycolipid-binding cholera toxin from the TGN to the ER lumen. We have examined the effects of BFA and Exo2, and found that both compounds are indistinguishable in their inhibition of anterograde transport and that both reagents significantly disrupt the morphology of the TGN in HeLa and in BS-C-1 cells. However, Exo2, unlike BFA, does not induce tubulation and merging of the TGN and endosomal compartments. Furthermore, and in contrast with its effects on cholera toxin, Exo2 significantly perturbs the delivery of Shiga toxin to the ER. Together, these results suggest that the likely target(s) of Exo2 operate at the level of the TGN, the Golgi and a subset of early endosomes, and thus Exo2 provides a more selective tool than BFA for examining membrane trafficking in mammalian cells.  相似文献   

5.
Addition of brefeldin A (BFA) to most cells results in both the formation of extensive, uncoated membrane tubules through which Golgi components redistribute into the ER and the failure to transport molecules out of this mixed ER/Golgi system. In this study we provide evidence that suggests BFA's effects are not limited to the Golgi apparatus but are reiterated throughout the central vacuolar system. Addition of BFA to cells resulted in the tubulation of the endosomal system, the trans-Golgi network (TGN), and lysosomes. Tubule formation of these organelles was specific to BFA, shared near identical pharmacologic characteristics as Golgi tubules and resulted in targeted membrane fusion. Analogous to the mixing of the Golgi with the ER during BFA treatment, the TGN mixed with the recycling endosomal system. This mixed system remained functional with normal cycling between plasma membrane and endosomes, but traffic between endosomes and lysosomes was impaired.  相似文献   

6.
《The Journal of cell biology》1993,123(6):1687-1694
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.  相似文献   

7.
Summary The effects of nocodazole and brefeldin A (BFA) on the growth of dikaryotic hyphae inSchizophyllum commune corresponded with the development of abnormal structures in the apical region of treated hyphae. Microtubules (MTs) were totally depolymerized after 1 h nocodazole treatment, which correlated with strong branch formation in the apical cells. One reason for branching could be the shift in the position of apical vesicles from the center to the side of the tip, observed in some nocodazole-treated hyphae. After 2 h growth in the presence of nocodazole the apical cells had malformed or swollen tips, or tips of normal shape but containing only a few apical vesicles. After 0.5 h treatment with BFA, almost all the leading hyphae had swollen apical parts in which the endoplasmic reticulum (ER) formed an interconnected network and perturbed Golgi particles were found. The orientation of MTs in the BFA-treated hyphae often followed that of the interconnected ER network, which suggested an association between MTs and ER. The results of the experiments with nocodazole suggest that, in filamentous homobasidiomycetes the subtle organization of cytoplasm necessary for the polar growth at the apex is maintained only in the presence of an intact MT cytoskeleton. The BFA experiments indicated that the secretion pathway inS. commune is sensitive to BFA. In addition rapid change in apical morphology in the BFA-treated hyphae emphasizes the importance of correct orientation of components of the secretory pathway for normal apical growth to continue.Abbreviations BFA brefeldin A - EM electron microscopy - ER endoplasmic reticulum - IIF indirect immunofluorescence - MBC methylbenzimidazole-2-ylcarbamate - MT microtubule - MVB multivesicular body - RER rough endoplasmic reticulum  相似文献   

8.
Summary The fungal metabolite brefeldin A (BFA) causes inhibition of cell growth inMicrasterias denticulata after 2 h incubation, combined with slight malformation of the cell shape. The BFA effects on cell development are accompanied by a gradual decrease in the number of Golgi cisternae and severe structural and morphological changes of the dictyosomes which are already visible after only 10 min exposure. When the treatment is prolonged the number of dictyosomes is markedly reduced, leading to almost complete loss of Golgi bodies, particularly in the young semicell. Groups of primary wall material-containing vesicles accumulated in areas of former dictyosomes, and previously unknown vesicular bodies are found. Restitution of almost normal dictyosomes occurs within 5 h when the cells are allowed to recover from BFA treatment.Micrasterias cells incubated in BFA at concentrations below 15 M maintain their ability to divide over several generations. Our results indicate that, of the various inhibitors of the secretory pathway tested against growingMicrasterias cells, BFA is the only drug which induces complete and reversible dissociation of dictyosomes in the growing semicell. This allows deductions about the function of the processes targeted by BFA during cell development inMicrasterias.Abbreviations BFA brefeldin A - CPA cyclopiazonic acid - ER endoplasmic reticulum - TM tunicamycin  相似文献   

9.
In this work we used brefeldin A (BFA), a specific inhibitor of export to the Golgi apparatus, to study pseudorabies virus viral glycoprotein processing and virus egress. BFA had little effect on initial synthesis and cotranslational modification of viral glycoproteins in the endoplasmic reticulum (ER), but it disrupted subsequent glycoprotein maturation and export. Additionally, single-step growth experiments demonstrated that after the addition of BFA, accumulation of infectious virus stopped abruptly. BFA interruption of virus egress was reversible. Electron microscopic analysis of infected cells demonstrated BFA-induced disappearance of the Golgi apparatus accompanied by a dramatic accumulation of enveloped virions between the inner and outer nuclear membranes and also in the ER. Large numbers of envelope-free capsids were also present in the cytoplasm of all samples. In control samples, these capsids were preferentially associated with the forming face of Golgi bodies and acquired a membrane envelope derived from the trans-cisternae. Our results are consistent with a multistep pathway for envelopment of pseudorabies virus that involves initial acquisition of a membrane by budding of capsids through the inner leaf of the nuclear envelope followed by deenvelopment and release of these capsids from the ER into the cytoplasm in proximity to the trans-Golgi. The released capsids then acquire a bilaminar double envelope containing mature viral glycoproteins at the trans-Golgi. The resulting double-membraned virus is transported to the plasma membrane, where membrane fusion releases a mature, enveloped virus particle from the cell.  相似文献   

10.
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.  相似文献   

11.
TGN38, a transmembrane glycoprotein predominantly localized to the trans-Golgi network, is utilized to study both the structure and function of the trans-Golgi network (TGN). The effects of brefeldin A (BFA) on the TGN were studied in comparison to its documented effects on the Golgi cisternae. During the first 30 min of BFA treatment, the TGN loses its cisternal structure and extends as tubules throughout the cytoplasm. By 60 min, it condenses into a stable structure surrounding the microtubule-organizing center. By electron microscopy, this structure appears as a population of large vesicles, and by immunolabeling, most of these vesicles contain TGN38. TGN38 cycles to the plasma membrane and back, which is shown by addition of TGN38 luminal domain antibodies directly to cell culture media. This results in rapid uptake of antibodies which label the TGN within 30 min, both in its native and BFA-induced conformation. A number of transmembrane proteins have been shown to take this cycling pathway, but TGN38 is unique in that it is the only one predominantly localized to the TGN. To investigate the cycling of TGN38, the endocytic pathway was labeled by internalization of Lucifer Yellow, and in the presence of BFA there was partial colocalization with TGN38. Further studies were carried out in which microtubules were depolymerized, resulting in dispersal of Golgi elements and inhibition of transport from endosomes to lysosomes. TGN38 cycling continues in the absence of microtubules. Taken together, these studies indicate that TGN38 returns from the plasma membrane via the endocytic pathway. We conclude that the TGN is structurally and functionally distinct from the Golgi cisternae, indicating that different molecules control membrane traffic from the Golgi cisternae and from the TGN.  相似文献   

12.
Recent studies using the fungal metabolite brefeldin A (BFA) have provided important insights into the dynamics and the organization of the ER/Golgi membrane system. Here we examined the effect of BFA on the functional integrity of the distal part of the secretory pathway, i.e., transport between trans-Golgi cisternae and the cell surface. To assay export via the constitutive pathway, we followed the movement of vesicular stomatitis virus (VSV) G glycoprotein that had been accumulated in the trans-Golgi network (TGN) by incubation of infected BHK-21 cells at 20 degrees C. Addition of BFA rapidly and reversibly inhibited cell surface transport of G protein. The block to secretion was not due to redistribution of externalized G protein to internal pools. It was also not due to collapse of TGN to the ER, since VSV G protein blocked in treated cells resided in compartments that were distinct from the ER/Golgi system. Similar effects were found with a bulk-flow marker: BFA blocked constitutive secretion of glycosaminoglycan chains that had been synthesized and sulfated in the trans-Golgi cisternae. To examine export via the regulated secretory pathway, we assayed secretion of [35S]SO4 labeled secretogranin II from PC12 cells, a marker that has been used to study secretory granule budding from the TGN (Tooze, S. A., U. Weiss, and W. B. Huttner. 1990. Nature [Lond.]. 347:207-208). BFA potently inhibited secretion of sulfated secretogranin II induced by K+ depolarization. Inhibition was at the level of granule formation, since BFA had no effect on regulated secretion from preformed granules. Taken together, the results suggest that BFA blocks export via both the constitutive and the regulated pathways. In contrast, endocytosis and recycling of VSV G protein were not blocked by BFA, consistent with previous studies that endocytosis is unaffected (Misumi, Y., Y. Misumi, K. Miki, A Takatsuki, G. Tamura, and Y. Ikehara. 1986. J. Biol. Chem. 261:11398-11403). These and earlier results suggest that the exo/endocytic pathway of mammalian cells consist of two similar but distinct endomembrane systems: an ER/Golgi system and a post-Golgi system. BFA prevents forward transport without affecting return traffic in both systems.  相似文献   

13.
We screened a panel of compounds derived from Exo2 - a drug that perturbs post-Golgi compartments and trafficking in mammalian cells - for their effect on the secretory pathway in Arabidopsis root epidermal cells. While Exo2 and most related compounds had no significant effect, one Exo2 derivative, named LG8, induced severe morphological alterations in both the Golgi (at high concentrations) and the endoplasmic reticulum (ER). LG8 causes the ER to form foci of interconnecting tubules, which at the ultrastructural level appear similar to those previously reported in Arabidopsis roots after treatment with the herbicide oryzalin. In cotyledonary leaves, LG8 causes redistribution of a trans Golgi network (TGN) marker to the vacuole. LG8 affects the anterograde secretory pathway by inducing secretion of vacuolar cargo and preventing the brassinosteroid receptor BRI1 from reaching the plasma membrane. Uptake and arrival at the TGN of the endocytic marker FM4-64 is not affected. Unlike the ADP ribosylation factor-GTP exchange factor (ARF-GEF) inhibitor brefeldin A (BFA), LG8 affects these post-Golgi events without causing the formation of BFA bodies. Up to concentrations of 50 μm, the effects of LG8 are reversible.  相似文献   

14.
Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.  相似文献   

15.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   

16.
The Golgi complex is composed of at least four distinct compartments, termed the cis-, medial, and trans-Golgi cisternae and the trans-Golgi network (TGN). It has recently been reported that the organization of the Golgi complex is disrupted in cells treated with the fungal metabolite, brefeldin-A. Under these conditions, it was shown that resident enzymes of the cis-, medial, and trans-Golgi return to the ER. We report here that 300-kD mannose 6-phosphate receptors, when pulse-labeled within the ER of brefeldin-A-treated cells, acquired numerous N-linked galactose residues with a half time of approximately 2 h, as measured by their ability to bind to RCA-I lectin affinity columns. In contrast, Limax flavus lectin chromatography revealed that less than 10% of these receptors acquired sialic acid after 8 h in brefeldin-A. Two lines of evidence suggested that proteins within and beyond the TGN did not return to the ER in the presence of brefeldin-A. First, the majority of 300-kD mannose 6-phosphate receptors present in the TGN and endosomes did not return to the ER after up to 6 h in brefeldin-A, as determined by their failure to contact galactosyltransferase that had relocated there. Moreover, although mannose 6-phosphate receptors did not acquire sialic acid when present in the ER of brefeldin-A-treated cells, they were readily sialylated when labeled at the cell surface and transported to the TGN. These experiments indicate that galactosyltransferase, a trans-Golgi enzyme, returns to the endoplasmic reticulum in the presence of brefeldin-A, while the bulk of sialyltransferase, a resident of the TGN, does not. Our findings support the proposal that the TGN is a distinct, fourth compartment of the Golgi apparatus that is insensitive to brefeldin-A.  相似文献   

17.
7-Dehydrobrefeldin A (7-oxo-BFA) is a brefeldin A (BFA) analog that, like BFA, is a potent phytotoxin of Alternaria carthami, a fungal pathogen of safflower (Carthamus tinctorius L.) plants. Both BFA and 7-oxo-BFA have been shown to be causal agents of the leaf spot disease of these plants. We have investigated the effects of 7-oxo-BFA on the secretion and the structure of the Golgi stacks of sycamore maple (Acer pseudoplatanus) suspension-cultured cells to determine whether 7-oxo-BFA affects these cells in the same manner as BFA. When applied at 10 micrograms/mL for 1 h, 7-oxo-BFA inhibits secretion of proteins by approximately 80%, the same value obtained for BFA. However, electron micrographs of high-pressure frozen/freeze-substituted cells demonstrated that 7-oxo-BFA is a more potent disrupter of the Golgi stacks of sycamore maple cells than BFA. In cells treated for 1 h with 10 micrograms/mL 7-oxo-BFA, very few Golgi stacks can be discerned. Most of those that are left consist of fewer than three cisternae, all of which stain like trans-Golgi cisternae. They are surrounded by clusters of large (150-300 nm in diameter), darkly staining vesicles that are embedded in a fine-filamentous, ribosome-excluding matrix. Similarly sized and stained vesicles are seen budding from the rims of the residual trans-Golgi cisternae. Both the large vesicles and the residual Golgi stack buds stain with anti-xyloglucan polysaccharide antibodies. Recovery of Golgi stacks after removal of 7-oxo-BFA from 1-h-treated cells takes 2 to 6 h, compared with 1 to 2 h for cells treated with BFA. In contrast to 7-oxo-BFA, the BFA breakdown product BFA acid had no effect either on secretion or on the secretory apparatus. This is the first report, to our knowledge of a BFA analog inhibiting secretion in a eukaryotic cell system.  相似文献   

18.
S A Wood  J E Park  W J Brown 《Cell》1991,67(3):591-600
Brefeldin A (BFA) is a fungal metabolite that causes a redistribution of the stacked cisternae of the Golgi complex into the endoplasmic reticulum by inhibiting anterograde transport. We report that BFA also causes membrane tubules derived from the trans-Golgi network (TGN) to fuse with early endosomes. In the presence of BFA, a mannose-6-phosphate receptor (M6PR)-enriched tubular network rapidly forms from the TGN, not from the prelysosomal compartment, and can be labeled with endocytic tracers after only 5 min of uptake at either 20 degrees C or 37 degrees C, indicating that it is also functionally an early endosome. Formation of the TGN-early endosome network is microtubule dependent and may involve modification of membrane processes affected by microtubule-associated motor activity. Concomitant with the formation of the fused TGN-early endosome network, there is a greater than 5-fold increase in cell surface M6PRs. The data suggest that BFA has revealed a membrane transport cycle between the TGN and early endosomes, perhaps used for the secretion or delivery of molecules to the cell surface.  相似文献   

19.
The 100-110-kD proteins (alpha-, beta-, beta'-, and gamma-adaptins) of clathrin-coated vesicles and the 110-kD protein (beta-COP) of the nonclathrin-coated vesicles that mediate constitutive transport through the Golgi have homologous protein sequences. To determine whether homologous processes are involved in assembly of the two types of coated vesicles, the membrane binding properties of their coat proteins were compared. After treatment of MDBK cells with the fungal metabolite Brefeldin A (BFA), beta-COP was redistributed to the cytoplasm within 15 s, gamma-adaptin and clathrin in the trans-Golgi network (TGN) dispersed within 30 s, but the alpha-adaptin and clathrin present on coated pits and vesicles derived from the plasma membrane remained membrane associated even after a 15-min exposure to BFA. In PtK1 cells and MDCK cells, BFA did not affect beta-COP binding or Golgi morphology but still induced redistribution of gamma-adaptin and clathrin from TGN membranes to the cytoplasm. Thus BFA affects the binding of coat proteins to membranes in the Golgi region (Golgi apparatus and TGN) but not plasma membranes. However, the Golgi binding interactions of beta-COP and gamma-adaptin are distinct and differentially sensitive to BFA. BFA treatment did not release gamma-adaptin or clathrin from purified clathrin-coated vesicles, suggesting that their distribution to the cytoplasm after BFA treatment of cells was due to interference with their rebinding to TGN membranes after a normal cycle of disassembly. This was confirmed using an in vitro assay in which gamma-adaptin binding to TGN membranes was blocked by BFA and enhanced by GTP gamma S, similar to the binding of beta-COP to Golgi membranes. These results suggest the involvement of GTP-dependent proteins in the association of the 100-kD coat proteins with membranes in the Golgi region of the cell.  相似文献   

20.
Brefeldin A (BFA) has a dramatic effect on the morphology of the Golgi apparatus and induces a rapid redistribution of Golgi proteins into the ER (Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Cell. 56:801-813). To date, no evidence that BFA affects the morphology of the trans-Golgi network (TGN) has been presented. We describe the results of experiments, using a polyclonal antiserum to a TGN specific integral membrane protein (TGN38) (Luzio, J.P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. 1990. Biochem. J. 270:97-102), which demonstrate that incubation of cells with BFA does induce morphological changes to the TGN. However, rather than redistributing to the ER, the majority of the TGN collapses around the microtubule organizing center (MTOC). The effect of BFA upon the TGN is (a) independent of protein synthesis, (b) fully reversible (c) microtubule dependent (as shown in nocodazole-treated cells), and (d) relies upon the hydrolysis of GTP (as shown by performing experiments in the presence of GTP gamma S). ATP depletion reduces the ability of BFA to induce a redistribution of Golgi proteins into the ER; however, it has no effect upon the BFA-induced relocalizations of the TGN. These data confirm that the TGN is an organelle which is independent of the Golgi, and suggest a dynamic interaction between the TGN and microtubules which is centered around the MTOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号