首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

3.
Monoclonal antibodies were prepared against lysosomal membrane proteins of amoebae and used to follow lysosome-phagosome fusion after induced phagocytosis. The specificity of antibodies was checked by indirect immunofluorescence microscopy, immunoelectron microscopy, and localization of the antigen in subcellular fractions. The antibody-recognized proteins started to appear on the membranes of phagolysosomes about 5 min after phagocytosis as detected by indirect immunofluorescence, and the intensity of fluorescence increased for up to 1 h. Results of injection experiments in which purified antibodies had been injected into living cells and probed by indirect fluorescence indicated that the antigens were located on the cytoplasmic side of the lysosomal membranes. Lysosomes fuse with phagosomes on the one hand but not with non-fusible vesicles such as symbiosomes on the other. The results support the view that a membrane component(s) of non-fusible vesicles somehow prevents lysosomes from fusing with them.  相似文献   

4.
The relationship between glycosylation, dimerization, and heparin affinity of lipoprotein lipase (LPL) was studied in 3T3-L1 adipocytes. Three forms of LPL subunits were found in normal cells; totally endo H-resistant (57 kDa), partially sensitive (54 kDa), and totally sensitive (51 kDa) forms. LPL in normal cells was active, dimeric, and showed high affinity for heparin. LPL in cells treated with tunicamycin, preventing the transfer of N-linked oligosaccharide chain, was unglycosylated (51 kDa) and inactive. LPL proteins were found as an aggregate, and had low affinity for heparin. After treatment with castanospermine, an inhibitor of ER glucosidase I, 80% of LPL activity was inhibited. Most of LPL proteins were totally endo H-sensitive, present as an aggregate, and had low affinity for heparin. LPL in cells treated with deoxymannojirimycin, an inhibitor of Golgi mannosidase I, was active, dimeric, and had high affinity for heparin as in normal cells. But LPL subunits were all endo H-sensitive. These results suggest that core glycosylation and subsequent removal of glucose residue is required, but processing after Golgi mannosidase I is not necessary for dimerization and acquisition of high heparin affinity of LPL.  相似文献   

5.
Monoclonal antibodies with thoroughly characterized target specificities can be used as powerful probes of protein conformation. In addition to providing information on the relative arrangement of the domains in the native molecule, they can also be used to monitor both early and late stages of protein folding and conformational changes related to enzyme action.  相似文献   

6.
7.
Lipoprotein lipase (EC 3.1.1.3) from rat adipose tissue was purified by affinity chromatography with heparin-Sepharose. Elution was carried out with buffered solutions of increasing NaCl molarity. Proteins without affinity for heparin were eluted with 0.5 M NaCl, while lipoprotein lipase activity was eluted as two peaks with 1.16 M NaCl (In earlier work on human adipose tissue (Etienne et al. (1974) C.R. Acad. Sc. Paris 279, 1487-1490) two fractions with lipoprotein lipase activity were also obtained). Phospholipase activity was detected in the fraction eluted with buffered 0.5 M NaCl and containing proteins without affinity for heparin. On feeding the fasting rats with fresh cream or glucose two peaks were also obtained, but the first peak had clearly increased while the second one had remained virtually unchanged.  相似文献   

8.
9.
Monoclonal antibodies were used to investigate the immunochemistry of human erythrocyte acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7). A series of experiments on the sedimentation velocity and Stokes radius of acetylcholinesterase and its immune complexes indicated that each antibody recognized a single high-affinity binding site (epitope) on the monomeric enzyme. Further analysis suggested that the antibody-binding sites were replicated on multimeric enzyme forms but were subject to steric hindrance between nearby IgG molecules or adjacent enzyme subunits. The cellular localization of the epitopes was studied by measuring the binding of monoclonal antibodies to the cholinesterase of intact erythrocytes. The results implied that most of the epitopes are exposed to the external media. However, one antibody failed to bind to intact cells, despite a relatively high affinity for detergent-solubilized antigen, possibly because its epitope is buried in the lipid bilayer.  相似文献   

10.
Spectrin is a major protein accounting for about 5% of whole-cell proteins in Amoeba proteus, and the precipitation of spectrin by intracellular injection of purified anti-spectrin monoclonal antibodies has a profound effect on cell morphology, motility, and movement-related cell activities in amoebae. Thus, amoebae injected with anti-spectrin antibodies show drastic changes in their shape and movement, suggesting that amoeba spectrin plays an important structural role, unlike nonerythroid spectrins in other cells. However, precipitation of spectrin does not affect the distribution of F-actin in amoebae.  相似文献   

11.
Human hepatic lipase is an important enzyme in high density lipoprotein (HDL) metabolism, being implicated in the conversion of HDL2 to HDL3. Three human hepatic lipase cDNA clones were identified in two lambda gt11 libraries from human liver. The cDNA-derived amino acid sequence predicts a protein of 476 amino acid residues, preceded by a 23-residue signal peptide. Four potential N-glycosylation sites are identified, two of which are conserved in rat hepatic lipase. On alignment with human, mouse, and bovine lipoprotein lipase, the same two sites were also conserved in lipoprotein lipase in all three species. Stringent conservation of the cysteine residues was also evident. Comparative analysis of amino acid sequences shows that hepatic lipase evolves at a rapid rate, 2.07 x 10(-9) substitutions/site/year, about four times that in lipoprotein lipase and half that in pancreatic lipase. Further, hepatic lipase and pancreatic lipase appear to be evolutionarily closer to each other than either of them is to lipoprotein lipase. Southern blot analysis revealed high frequency restriction fragment length polymorphisms of the hepatic lipase gene for the enzymes HindIII and MspI. these polymorphisms will be useful for haplotype and linkage analysis of the hepatic lipase gene. Using cloned human hepatic lipase cDNA as a hybridization probe, we performed Southern blot analysis of a panel of 13 human-rodent somatic cell hybrids. Concordance analysis of the various hybrid clones indicates that the hepatic lipase gene is located on the long arm of human chromosome 15. Analysis of hybrids containing different translocations of chromosome 15 localized the gene to the region 15q15----q22.  相似文献   

12.
A Karmali  C Novo 《Biochimie》1990,72(5):369-374
Alfa-fetoprotein from human cord serum was purified in a single step by hydrophobic interaction chromatography on Phenyl Sepharose CL-4B with a final recovery of alfa-fetoprotein of about 90% and a purification factor of 900. The purified preparation was homogeneous on SDS-PAGE and native PAGE running with a relative molecular weight of 72,000. Monoclonal antibodies against this purified preparation were raised by hybridoma technology using Sp2/0 myeloma cells as a fusion partner. 50% of culture wells exhibited hybrid growth and 7% of these wells contained anti-AFP secreting hybrids. Positive hybrid cells were cloned twice by the limiting dilution method and 8 clones were obtained that secreted monoclonal antibodies. Five of these cell lines (3F6H10, 3F6H4, 3F6H1, 3F6G5 and 3F6G10) were selected at random for purification and characterization purposes. All 5 cell lines secreted monoclonal antibodies of IgG1 subclass which were purified by affinity chromatography on Protein A- Sepharose CL-4B column with a final recovery of 80% and a purification factor of about 13. The purified preparations were homogeneous on SDS-PAGE, native PAGE and IEF. The monoclonal antibodies were highly specific for human alfa-fetoprotein as determined by Western blotting. The affinity constants (K) of these Mab ranged from 10(6) to 10(9) l/mol.  相似文献   

13.
Single and double biotin-avidin-peroxidase immunocytochemical methods in conjunction with an anti-trophoblast monoclonal antibody 18B/A5 and an anti-HLA-A,B,C monoclonal antibody W6/32 were used to study various human trophoblast populations. Several combinations of peroxidase substrates were tried in the double-labeling procedure. It was concluded that the use of 4-chloro-1 naphthol to develop the primary sequence peroxidase and of 3-amino-9-ethyl carbazole for the second sequence peroxidase was the most suitable. The significant findings were: Monoclonal antibody 18B/A5 proved to be a useful marker for villous as well as nonvillous trophoblast, which facilitated the identification of these cells particularly in the placental bed. The expression of MHC Class I antigens was not confined to extravillous trophoblast but these antigens were also demonstrable on the villous cytotrophoblast proliferating to form new primary villi. Double labeling revealed that many of these cells, particularly those furthest away from the mesenchymal core, expressed both trophoblast and HLA antigens as shown by a mixing of the colors produced by the two reaction products. A large number of these HLA-A,B,C, positive trophoblast cells were found to infiltrate deep into the uterine myometrium. The hypothesis was put forward that these fetal cells could be the ones that are responsible for maternal sensitization.  相似文献   

14.
15.
Monoclonal antibodies binding to distinct epitopes on the tail of brush border myosin were used to modulate the conformation and state of assembly of this myosin. BM1 binds 1:3 of the distance from the tip of the tail to the head and prevents the extended-tail (6S) monomer from folding into the assembly-incompetent folded-tail (10S) state, whereas BM4 binds to the tip of the myosin tail, and induces the myosin to fold into the 10S state. Thus, at physiological ionic strength BM1 promotes and BM4 blocks the assembly of the myosin into filaments. Using BM1 and BM4 together, we were able to prevent both folding and filament assembly, thus locking myosin molecules in the extended-tail 6S monomer conformation at low ionic strength where they normally assemble into filaments. Using these myosin-antibody complexes, we were able to investigate independently the effects of folding of the myosin tail and assembly into filaments on the myosin MgATPase. The enzymatic activities were measured from the fluorescent profiles during the turnover of the ATP analogue formycin triphosphate (FTP). Extended-tail (6S) myosin molecules had an FTPase activity of 1-5 X 10(-3) s-1, either at high ionic strength as a monomer alone or when complexed with antibody, or at low ionic strength as filaments or when maintained as extended-tail monomers by the binding of BM1 and BM4. Folding of the molecules into the 10S state reduced this rate by an order of magnitude, effectively trapping the products of FTP hydrolysis in the active sites.  相似文献   

16.
The kinetics of inhibition of the esterase and lipase activities of bovine milk lipoprotein lipase (LPL) were compared. The esterase LPL activity against emulsified tributyrylglycerol was not affected by the enzyme activator apolipoprotein C-II (C-II) and amounted to about 15% of the "plus activator" lipase enzyme activity. Heparin at concentrations of 20 micrograms/ml inhibited 25% of the esterase activity. The reaction followed Henri-Michaelis-Menten kinetics and the inhibition by heparin followed a linear, intersecting, noncompetitive kinetic model. On the other hand, the basal lipase activity of LPL against emulsified trioleoylglycerol (TG) was very sensitive to inhibition by heparin: 1 microgram/ml inhibited about 80% of the reaction and 3 micrograms/ml drove the reaction to zero. The velocity curve for the uninhibited basal LPL activity was sigmoidal with an apparent nH(TG) of 2.94. Heparin inhibited the lipase activity competitively: heparin decreased nH(TG) and increased[TG]0.5 6.4-fold, while TG decreased the nH(Heparin) from 2.14 to 0.95 and caused a 3-fold increase in [Heparin]0.5. C-II, at concentrations lower than 2.5 X 10(-8) M (i.e., lower than KA), countered the inhibitory effects of heparin: at constant inhibitor concentrations, C-II increased nH(TG) from 1.78 to 2.52 and decreased [TG]0.5 about 10-fold; it also increased the apparent Vmax. At the lower C-II concentrations, nH(C-II) was approximately equal to 1.0 and increasing the TG concentrations decreased [C-II]0.5 from 3.8 X 10(-8) to 8.5 X 10(-9) M, with no effect on the nH(C-II). At the higher C-II concentrations, nH(C-II) was 2.5 and TG decreased [C-II]0.5 about 2-fold with no effect on the nH(C-II). In the absence of heparin, C-II had no effect on nH(TG) nor on [TG]0.5, but it increased the apparent Vmax. On the other hand, TG had no effect on nH(C-II) nor on [C-II]0.5, but at any given C-II concentration, the reaction velocity increased with increasing TG concentrations. It is concluded that TG and heparin as well as C-II and heparin are mutually exclusive and that lipoprotein lipase is a multisite enzyme, possibly a tetramer, with three high-affinity catalytic sites, and an equal number of sites for C-II and heparin per oligomer. However, LPL differs from classical allosteric enzymes in that its activator has no effect on substrate cooperativity nor on [S]0.5; its only effect is to increase Vmax by increasing the catalytic rate constant kp by inducing conformational changes in the enzyme.  相似文献   

17.
Monoclonal antibodies against a spectrin-like membrane-associated protein of xD amoebae. (Amoeba proteus) were used to determine the distribution of the protein and some of its characteristics. A total of 34 monoclonal antibodies recognizing different epitopes of the protein were obtained, of which seven stained cell membranes by indirect immunofluorescence. The spectrin-like protein had two subtypes of 225 and 220 kDa and several monoclonal antibodies cross-reacted with human erythrocyte spectrin when checked by indirect immunofluorescence staining and immunoblotting. Some of the antibodies also cross-reacted with antigens in HeLa cells and chick embryo fibroblasts. Polyclonal and monoclonal antibodies against Drosophila and human erythrocyte spectrins cross-reacted with the spectrin-like protein from amoebae. On the basis of these results, it was concluded that the protein is a spectrin. The protein was found on most cellular membranes of amoebae, including the plasma, nuclear, and phagosomal membranes, as well as symbiosome membranes.  相似文献   

18.
The C-terminal domain of lipoprotein lipase (LPL) is involved in several important interactions. To assess its contribution to the binding ability of full-length LPL we have determined kinetic constants using biosensor technique. The affinity of the C-terminal domain for heparin was about 500-fold lower than that of full-length LPL (K(d) = 1.3 microM compared to 3.1 nM). Replacement of Lys403, Arg405 and Lys407 by Ala abolished the heparin affinity, whereas replacement of Arg420 and Lys422 had little effect. The C-terminal domain increased binding of chylomicrons and VLDL to immobilized heparin relatively well, but was less than 10% efficient in binding of LDL compared to full-length LPL. Deletion of residues 390-393 (WSDW) did not change the affinity to heparin and only slightly decreased the affinity to lipoproteins. We conclude that the C-terminal folding domain contributes only moderately to the heparin affinity of full-length LPL, whereas the domain appears important for tethering triglyceride-rich lipoproteins to heparin-bound LPL.  相似文献   

19.
A monoclonal antibody, 5D2, which inhibits human lipoprotein lipase (hLPL) activity has been widely used for assessment of LPL immunoreactive mass in the clinical evaluation of patients [1] and for analysis of structure-function relationships of LPL [2,3]. We have mapped the epitope on LPL, recognized by the 5D2 antibody, within residues 396-405. Ala400 is the critical amino acid residue conferring epitope specificity. This knowledge confirms that the C-terminal domain of LPL plays a critical role in LPL activity and also provides important information for studies exploring the structure-function relationship of LPL using this antibody.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号