首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In order to determine ortho-acetyl-L-carnitine, two biosensors were proposed. The biosensors were designed using physical immobilization of L-amino acid oxidase (L-AAOD) and horseradish peroxidase (HRP). Electrode characteristics were obtained and compared for the two carbon paste (graphite powder and paraffin oil) biosensors. The linear concentration ranges for the proposed biosensors were in the ranges of fmol/L to nmol/L, magnitude order with low limits of detection. Due to their reliability, the biosensors were used as detectors in a sequential injection analysis system, and gave reliable results for on-line assay of ortho-acetyl-L-carnitine in synthesis process control with a frequency of 75 samples per hour.  相似文献   

2.
A sequential injection analysis (SIA) is proposed for the simultaneous determination of L- and D-methotrexate (Mtx) using amperometric biosensors as detectors. A SIA system is proposed due to the highest precision and accuracy and lower consumption of sample and buffer. The amperometric biosensors used as detectors in SIA system were based on L-amino acid oxidase (L-AAOD) or/and L-glutamate oxidase (L-Glox) and horseradish peroxidase (HRP) for the assay of L-Mtx and D-amino acid oxidase (D-AAOD) and HRP for the assay of D-Mtx were selected. The linear concentration ranges are of pmol/l to nmol/l magnitude order, with very low limits of detection. The SIA/biosensors system can be used reliably on-line in synthesis process control, for the simultaneous assay of L- and D-Mtx with a frequency of 34 samples per hour.  相似文献   

3.
Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi-enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on-line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).  相似文献   

4.
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.  相似文献   

5.
Two amperometric biosensors based on L- and D-amino acid oxidase, respectively, are proposed for the simultaneous detection of S- and R-captopril in a sequential injection analysis system (SIA). The linear concentration ranges are: 0.4-1.6 micromol/l (S-captopril) and 120-950 nmol/l (R-captopril) with detection limits of 0.2 and 15 nmol/l, respectively. The biosensors/SIA system can be used reliably on-line in synthesis process control, for the simultaneous assay of S- and R-captopril with a frequency of 34 samples/h.  相似文献   

6.
Abstract

Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi‐enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on‐line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).  相似文献   

7.
8.
Amperometric biosensors based on gold planar or nanocomposite electrode containing multiwalled carbon nanotubes for determination of glycerol were developed. The biosensors were constructed by immobilization of a novel multienzyme cascade consisting of glycerol kinase/creatine kinase/creatinase/sarcosine oxidase/peroxidase between a chitosan "sandwich." A measuring buffer contained adenosine 5'-triphosphate (ATP), creatine phosphate, and an artificial electrochemical mediator ferrocyanide. The currents proportional to glycerol concentration were measured at working potential of -50 mV against Ag/AgCl reference electrode. The biosensors showed linearity over the ranges of 5-640 μM and 5-566 μM with detection limits of 1.96 and 2.24 μM and sensitivities of 0.80 and 0.81 nA μM(-1), respectively. Both types of biosensors had a response time of 70s. The biosensors demonstrated satisfactory operational stability (no loss of sensitivity after 90 consecutive measurements) and excellent storage stability (90% of the initial sensitivity after 15 months of storage at room temperature). The results obtained from measurements of wines correlated well with those obtained with an enzymatic-spectrophotometric assay. The presented multienzyme cascade can be used also for determination of triglycerides or various kinase substrates when glycerol kinase is replaced by other kinases.  相似文献   

9.
Wu L  Lu X  Jin J  Zhang H  Chen J 《Biosensors & bioelectronics》2011,26(10):4040-4045
In this work, an electrochemical DNA biosensor based on double-stranded DNA modified Au electrode (dsDNA/Au) was proposed for the rapid screening and detection of chlorinated benzenes pollutants, in which redox-active methylene blue (MB) was used to amplify the interaction between dsDNA and the target analyte. Using hexachlorobenzene (HCB) as a model analyte of chlorinated benzenes, the biosensor demonstrated a linear response with the logarithm of HCB concentrations from 100 pmol L(-1) to 100 nmol L(-1). The obtained detection limit was 30 pmol L(-1), which was remarkably superior to other biosensors. The interaction mechanism of the biosensor with HCB was proposed based on systematical characterization by cyclic voltammetry (CV), differential pulse voltammetry (DPV), UV-vis spectrometry and electrochemical quartz crystal microbalance (EQCM). Further studies revealed that the biosensor could screen chlorinated benzenes in the presence of 100 fold amount of other co-existing chemicals (ethyl acetate and sodium oxalate, etc.), and the response signal of the biosensors for different chlorinated benzenes was correlative to their respective toxicity. The proposed biosensor proved to be a promising "alarm" tool for rapid screening of chlorinated benzenes in real water samples.  相似文献   

10.
A novel method for sensitivity enhancement of spectral surface plasmon resonance (SPR) biosensors was presented by reducing the refractive index of the sensing prism in the analysis of protein arrays. Sensitivity of spectral SPR biosensors with two different prisms (BK-7, fused silica) was analyzed by net shifts of resonance wavelength for specific interactions of GST–GTPase binding domain of p21-activated kinase-1 and anti-GST on a mixed thiol surface. Sensitivity was modulated by the refractive index of the sensing prism of the spectral SPR biosensors with the same incidence angle. The sensitivity of a spectral SPR biosensor with a fused silica prism was 1.6 times higher than that with a BK-7 prism at the same incidence angle of 46.2°. This result was interpreted by increment of the penetration depth correlated with evanescent field intensity at the metal/dielectric interface. Therefore, it is suggested that sensitivity enhancement is readily achieved by reducing the refractive index of the sensing prism of spectral SPR biosensors to be operated at long wavelength ranges for the analysis of protein arrays.  相似文献   

11.
This work presents a novel, miniature optical biosensor by immobilizing horseradish peroxidase (HRP) or the HRP/glucose oxidase (GOx) coupled enzyme pair on a CMOS photosensing chip with a detection area of 0.5 mm × 0.5 mm. A highly transparent TEOS/PDMS Ormosil is used to encapsulate and immobilize enzymes on the surface of the photosensor. Interestingly, HRP-catalyzed luminol luminescence can be detected in real time on optical H2O2 and glucose biosensors. The minimum reaction volume of the developed optical biosensors is 10 μL. Both optical H2O2 and glucose biosensors have an optimal operation temperature and pH of 20–25 °C and pH 8.4, respectively. The linear dynamic range of optical H2O2 and glucose biosensors is 0.05–20 mM H2O2 and 0.5–20 mM glucose, respectively. The miniature optical glucose biosensor also exhibits good reproducibility with a relative standard deviation of 4.3%. Additionally, ascorbic acid and uric acid, two major interfering substances in the serum during electrochemical analysis, cause only slight interference with the fabricated optical glucose biosensor. In conclusion, the CMOS-photodiode-based optical biosensors proposed herein have many advantages, such as a short detection time, a small sample volume requirement, high reproducibility and wide dynamic range.  相似文献   

12.
In this study, recombinant bacterial biosensors were immobilized in an agarose matrix and used for the simple and disposable field monitoring of phenolic compounds. In brief, Escherichia coli cells harboring the pLZCapR plasmid, which was previously designed to express the β-galactosidase reporter gene in the presence of phenolic compounds, were immobilized in agarose gel with or without a substrate [chlorophenol red β-galactopyranoside (CPRG)] and dispensed to the wells of a 96-well plate. Analytes were added to the wells, and color development was monitored either directly from wells containing intact cells co-immobilized with CPRG (SYS I), or using cells that were lysed prior to the addition of CPRG (SYS L). SYS L showed relatively higher intensities and faster color development than SYS I. However, both systems developed a red color (representing hydrolysis of CPRG) in the presence of 10 μM to 10~100 mM phenol, with maximum responses seen at 1~5 and 50 mM phenol for SYS I and SYS L, respectively. Other phenolic compounds (2-chlorophenol, 2-methylphenol, 3-methylphenol, 4-chlorophenol, 2-nitrophenol, resorcinol, catechol, and 2,5-dimethylphenol) were also detected by the systems, with varied detection ranges and responses. The agarose-immobilized biosensors were stable for 28 days, retaining 39~69% of their activities when stored at 4°C without nutrients or additives. The immobilized biosensors described herein do not require the on-site addition of a substrate (in the case of SYS I), the pretreatment of samples, or the use of unwieldy instruments for the on-site monitoring of phenolic compounds from environmental samples.  相似文献   

13.
We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor–UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5 ng/ml. The detection limit is 0.06 ng/ml for the biosensor with antibody and 0.08 ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20 ng/ml for plasma samples and 0.30 to 0.49 ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids.  相似文献   

14.
The toxicity of two common organotin pollutants and their initial breakdown products (tributyltin, dibutyltin, triphenyltin and diphenyltin) were assessed using two different bioluminescent microbial biosensors: Microtox and lux -modified Pseudomonas fluorescens pUCD 607. The organotins were made up as standards, and tested both in double-deionized water and in extracted soil solution, the latter representing a realistic matrix for terrestrial contamination. Microtox was especially sensitive to the organotins, with 50% effective concentration (EC50) values (15 min) for tributyltin as low as 21·9 μg l−1 in pure water, and 0·118 μg l−1 in soil extract. The sensitivity of Microtox was increased by an order of magnitude in soil extract. The Ps. fluorescens was less sensitive, with EC50 values (30 min) of around 800 μg l−1 in pure water. The toxicity to Ps. fluorescens was decreased by around an order of magnitude in soil extract. The two biosensors showed different response patterns, with Microtox being more sensitive to the triorganotins and Ps. fluorescens being more sensitive to the diorganotins.  相似文献   

15.
After isolation from a pulp mill wastewater treatment facility, two yeast strains, designated SPT1 and SPT2, were characterized and used in the development of mediated biochemical oxygen demand (BOD) biosensors for wastewater. 18S rRNA gene sequence analysis revealed a one nucleotide difference between the sequence of SPT1 and those of Candida sojae and Candida viswanthii. While SPT2 had the highest overall homology to Pichia norvegensis, at only 73.5%, it is clearly an ascomycete, based on BLAST comparisons and phylogenetic analyses. Neighbor-joining dendrograms indicated that SPT1 clustered with several Candida spp., and that SPT2 clustered with Starmera spp., albeit as a very deep branch. Physiological tests, microscopic observations, and fatty acid analysis confirmed that SPT1 and SPT2 are novel yeast strains. Physiological tests also indicated that both strains had potential for use in mediated biosensors for estimation of BOD in wastewater. The lower detection limits of SPT1- and SPT2-based K3Fe(CN)6-mediated biosensors for a pulp-mill effluent were 2 and 1 mg BOD/L, respectively. Biosensor-response times for effluents from eight different pulp mills were in the range of 5 min. Reliability and sensitivity of the SPT1- and SPT2-based biosensors were good, but varied with the wastewater.  相似文献   

16.
Highly sensitive biosensors based on pH-sensitive field effect transistors and cholinesterases for detection of solanaceous glycoalkaloids have been developed, characterised and optimised. The main analytical characteristics of the biosensors developed have been studied under different conditions and an optimal experimental protocol for glycoalkaloids determination in model solution has been proposed. Using such a biosensor and an enzyme reversible inhibition effect, the total potato glycoalkaloids content can be determined within the range of 0.2-100 microM depending on the type of alkaloid, with lowest detection limits of 0.2 microM for alpha-chaconine, 0.5 microM for alpha-solanine and 1 microM for solanidine. The dynamic ranges for the compounds examined show that such biosensors are suitable for a quantitative detection of glycoalkaloids in real potato samples. High reproducibility, operational and storage stability of the biosensor developed have been shown.  相似文献   

17.
A novel mercury-doped silver nanoparticles film glassy carbon (Ag/MFGC) electrode was prepared in this study. Electrochemical behaviors of cysteine on the Ag/MFGC electrode were investigated by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The results indicated that cysteine could be strongly adsorbed on the surface of the Ag/MFGC electrode to form a thin layer. The doped electrode could catalyze the electrode reaction process of cysteine, and the cysteine displayed a pair of well-defined and nearly reversible CV peaks at the electrode in an acetate buffer solution (pH 5.0). The Ag/MFGC electrode was used for determination of cysteine by differential pulse voltammetry. The linear range was between 4.0x10(-7) and 1.3x10(-5) mol/L, with a detection limit of 1.0x10(-7) mol/L and a signal-to-noise ratio of 3. The relative standard deviation was 2.4% for seven successive determinations of 1.0x10(-5) mol/L cysteine. The determinations of cysteine in synthetic samples and urinal samples were carried out and satisfactory results were obtained. Amperometric application of the Ag/MFGC electrode as biosensors is proposed.  相似文献   

18.
This work presents polysulfone membranes as new materials for the development of compact dehydrogenase-based biosensors. Composite films were prepared by mixing polysulfone with graphite and were deposited on epoxy-graphite composite electrodes. Redox mediators were successfully immobilized in the composite film leading to highly reproducible biosensors, without leakage of the immobilized species. This results in a more reliable analytical system as, at the same time, problems of electrode fouling related to the detection of the coenzyme nicotinamide adenine dinucleotide (NADH) on which is based the amperometric detection of dehydrogenase-based biosensors are avoided. Scanning electron microscopy was used to study the morphological characteristics of the surface and the cross-section of the polysulfone-graphite composite films. Several procedures to immobilize enzymes in these membranes were demonstrated. Glutamate dehydrogenase (GlDH) was immobilized as an example of dehydrogenase enzyme, in this case for the development of an ammonium biosensor. High sensitivity, good selectivity, wide linear ranges and short response times were obtained for the optimized sensors and biosensors. Their good performance combined with the simplicity of the construction method, make the polysulfone-graphite composite films attractive matrices for the development of new enzyme-based biosensors, especially those based on dehydrogenase enzymes.  相似文献   

19.
Interest in molecular imprinted polymer techniques has increased because they allows for the improvement of some stability characteristics of enzymes. The high stability of molecularly imprinted enzymes for a substrate can make them ideal alternatives as recognition elements for sensors. A bioimprinted mushroom tissue homogenate biosensor was constructed in a very simple way. For this purpose, sulfite was used. The enzyme, polyphenol oxidase, was first complexed by using a competitive inhibitor, sulfite, in aqueous medium and then the enzyme was immobilized on gelatin by crosslinking with glutaraldehyde on a glass electrode surface. Similarly, polyphenol oxidase uncomplexed with sulfite was also immobilized on a glass electrode in the same conditions. The aim of the study was to compare the two biosensors in terms of their repeatability and thermal, pH, and operational stability; also, the linear ranges of the two biosensors were compared with each other.  相似文献   

20.
In this study, electrical impedimetric biosensors composed of Au-electrodes were fabricated for the quantitative detection of human serum albumin (HSA), an essential biomarker of liver function. The Au-electrodes were fabricated via a single-step photolithography process, and can be easily integrated in biochips for assessing liver function in the future. The glass sensing surface between two adjacent Au-electrodes was modified with 3-aminopropyltriethoxysilane (APTES) to improve the biocompatibility for its subsequent binding to anti-human serum albumin (AHSA). The sensing surface without AHSA binding was blocked using skim milk powders, preventing possible non-specific bonding HSA conjugation. Biosensors were used to measure HSA concentration for liver function detection. The impedance between two adjacent Au-electrodes of the biosensors applied with various HSA concentrations was directly measured, and quantified using an electrochemical impedance spectroscopy system under AC conditions. The results of plotting both values in log scales indicated the impedance increased linearly with HSA conjugation increase. The limit of HSA detection was about 2'10(-4)mg/ml using the electrochemical impedimetric biosensor proposed in this work. This study demonstrates the feasibility of using electrochemical impedimetry as a bio-sensing mechanism to quantify human serum albumin concentration. The sensor proposed in this work also displays great potential for assessing liver function because of its simple detection mechanism, ease of biochip integration, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号