首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   

2.
To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1-/-; p130-/- mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1-/- counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1-/-; p130-/- animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1-/- splenocytes. The finding that the p27Kip1-/-; p130-/- splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.  相似文献   

3.
We have used the non-specific inhibitor of protein kinases, staurosporine, to investigate the role of protein phosphorylation during aggregation, the mobilization of intracellular Ca2+ (Ca2+)i and intracellular pH (pHi) in thrombin-stimulated platelets. The concentration of staurosporine chosen for these studies, 1 microM, was previously reported to inhibit protein phosphorylation completely but to have no effect on the activation of phospholipase C in thrombin-stimulated human platelets [Watson, McNally, Shipman & Godfrey (1988) Biochem. J. 249, 345-350]. Aggregation induced by phorbol dibutyrate is slow (several minutes) and is inhibited completely by staurosporine. In contrast, aggregation induced by thrombin, platelet-activating factor or ionophore A23187 is rapid (occurs within 60 s), and is slowed, but not inhibited, in the presence of staurosporine. On the other hand, staurosporine causes a small potentiation of the peak [Ca2+]i signal induced by thrombin and a marked increase in the half-life of decay of this signal, but has no effect on pHi. Under conditions designed to prevent an increase in [Ca2+]i (presence of Ni2+ to prevent Ca2+ entry, and depletion of the intracellular Ca2+ stores), aggregation induced by thrombin resembles that by phorbol dibutyrate and is now inhibited completely by staurosporine. Taken together, these results provide evidence for two signalling pathways for aggregation, a relatively rapid phosphorylation-independent route mediated by Ca2+ and a slower, phosphorylation-dependent, pathway mediated by protein kinase C. Since staurosporine slows aggregation induced by thrombin, it appears that under normal conditions these pathways interact synergistically.  相似文献   

4.
5.
The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.  相似文献   

6.
Peroxisome division is regulated by the conserved peroxin Pex11p. In Saccharomyces cerevisiae (Sc), induction of the phosphoprotein ScPex11p coincides with peroxisome biogenesis. We show that the ScPex11p homologue in Pichia pastoris (PpPex11p) is phosphorylated at serine 173. PpPex11p expression and phosphorylation are induced in oleate and coordinated with peroxisome biogenesis. PpPex11p transits to peroxisomes via the endoplasmic reticulum (ER). PpPex11p is unstable and ER restricted gin pex3Δ and pex19Δ cells, which are impaired in peroxisomal membrane protein biogenesis. In oleate medium, the P. pastoris mutants pex11A (constitutively unphosphorylated; S173A) and pex11D (constitutively phosphorylated; S173D) exhibit juxtaposed elongated peroxisomes (JEPs) and hyperdivided forms, respectively, although protein levels remain unchanged. In contrast with ScPex11p, the ER-to-peroxisome translocation in P. pastoris is phosphorylation independent, and the phosphorylation occurs at the peroxisome. We show that PpPex11p interacts with the peroxisome fission machinery via PpFis1p and is regulated by phosphorylation because PpPex11p and PpPex11Dp interact more strongly with PpFis1p than PpPex11Ap. Neither PpPex11p nor PpFis1p is necessary for peroxisome division in methanol medium. We propose a model for the role of PpPex11p in the regulation of peroxisome division through a phosphorylation-dependent interaction with the fission machinery, providing novel insights into peroxisome morphogenesis.  相似文献   

7.
8.
9.
10.
Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with 31P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by 13C NMR isotopomer analysis of the fate of [U-13C] glucose metabolism.Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.  相似文献   

11.
12.
BACKGROUND: At therapeutic concentrations, the antineoplastic agent taxol selectively perturbs mitotic spindle microtubules. Taxol has recently been shown to induce apoptosis, similar to the mechanism of cell death induced by other antineoplastic agents. However, taxol has shown efficacy against drug-refractory cancers, raising the possibility that this pharmacological agent may trigger an alternative apoptotic pathway. MATERIALS AND METHODS: The kinetics and IC50 of mitotic (M) block, aberrant mitosis, and cytotoxicity following taxol treatment were analyzed in human cell lines as well as normal mouse embryo fibroblasts (MEFs) and MEFs derived from p53-null mice. Apoptosis was followed by DNA gel electrophoresis and by in situ DNA end-labeling (TUNEL). RESULTS: Taxol induced two forms of cell cycle arrest: either directly in early M at prophase or, for those cells progressing through aberrant mitosis, arrest in G1 as multimininucleated cells. TUNEL labeling revealed that DNA nicking occurred within 30 min of the arrest in prophase. In contrast, G1-arrested, multimininucleated cells became TUNEL positive only after several days. In the subset of cells that became blocked directly in prophase, both wt p53-expressing and p53-null MEFs responded similarly to taxol, showing rapid onset of DNA nicking and apoptosis. However, p53-null MEFs progressing through aberrant mitosis failed to arrest in the subsequent G1 phase or to become TUNEL positive, and remained viable. CONCLUSIONS: Taxol induces two forms of cell cycle arrest, which in turn induce two independent apoptotic pathways. Arrest in prophase induces rapid onset of a p53-independent pathway, whereas G1-block and the resulting slow (3-5 days) apoptotic pathway are p53 dependent.  相似文献   

13.
14.
In Chinese hamster embryonic fibroblasts (IIC9 cells) alpha-thrombin activates the MAPK(ERK) and phosphatidylinositol 3-OH-kinase (PI 3-kinase)/Akt pathways, and both are essential for progression through the G(1) phase of the cell cycle. We investigated in IIC9 cells, the role of beta-arrestin1 in alpha-thrombin signaling to these pathways. alpha-Thrombin stimulates rapid and sustained PI 3-kinase and Akt activities. Expression of a dominant negative beta-arrestin1 (beta-arrestin1(V53D)) inhibits rapid but not sustained PI 3-kinase and Akt activities. Surprisingly, expression of beta-arrestin1(V53D) does not block activation of the MAPK(ERK) pathway. PI 3-kinase and Akt activities are also inhibited by expression of a beta-arrestin1 mutant, which impairs binding to c-Src (beta-arrestin1(P91G-P121E)), indicating the involvement of c-Src in the rapid stimulation of the PI 3-kinase/Akt pathway. Consistent with these results, PP1, a selective inhibitor of c-Src family kinases, prevents alpha-thrombin-stimulated Akt phosphorylation. Expression of beta- arrestin1(V53D) does not prevent G(1) progression, as its expression has no effect on [(3)H]thymidine incorporation into DNA. In agreement with the ineffectiveness of beta-arrestin1(V53D) to block G(1) progression, cyclin D1 protein amounts and CDK4-cyclin D1 activity is unaffected by expression of beta-arrestin1(V53D). Thus in IIC9 cells, alpha-thrombin activates rapid beta-arrestin1-dependent and sustained beta-arrestin1-independent Akt activity, suggesting that two mechanisms are involved. Furthermore, although blocking the beta-arrestin1-independent PI 3-kinase/Akt pathway prevents G(1) progression, inhibition of the beta-arrestin1-dependent pathway does not, indicating different roles for the rapid and sustained activities.  相似文献   

15.
We have shown previously that in KB-3 (HeLa) cells vinblastine causes downregulation of the CDK inhibitor p21 through a c-Jun regulated pathway. To test the hypothesis that p21 downregulation is necessary to alleviate a protective function, we transfected p21 in KB-3 cells and examined the apoptotic response to vinblastine. The results showed that cells overexpressing p21 were apoptosis-resistant, not through an ability of p21 to cause cell cycle arrest prior to mitotic arrest, but through altering the fate of mitotically arrested cells after drug treatment. Moreover, p21 null HCT116 cells were more prone to vinblastine-induced apoptosis relative to wild-type cells. The results provide support for a model whereby p21 downregulation promotes vinblastine-induced apoptosis by alleviating its protective function following mitotic arrest.  相似文献   

16.
17.
Cells respond to DNA replication stress by triggering cell cycle checkpoints, repair, or death. To understand the role of the DNA damage response pathways in determining whether cells survive replication stress or become committed to death, we examined the effect of loss of these pathways on cellular response to agents that slow or arrest DNA synthesis. We show that replication inhibitors such as excess thymidine, hydroxyurea, and camptothecin are normally poor inducers of apoptosis. However, these agents become potent inducers of death in S-phase cells upon small interfering RNA-mediated depletion of the checkpoint kinase Chk1. This death response is independent of p53 and Chk2. p21-deficient cells, on the other hand, produce a more robust apoptotic response upon Chk1 depletion. p21 is normally induced only late after thymidine treatment. In Chk1-depleted cells p21 induction occurs earlier and does not require p53. Thus, Chk1 plays a primary role in the protection of cells from death induced by replication fork stress, whereas p21 mediates through its role in regulating entry into S phase. These findings are of potential importance to cancer therapy because we demonstrate that the efficacy of clinically relevant agents can be enhanced by manipulation of these signaling pathways.  相似文献   

18.
19.
20.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号