首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neomycin was used to assess the involvement of Ins (1,4,5)P3 in the Ca2+ release from the endoplasmic reticulum induced by the bile acid taurolithocholate. In saponin-permeabilized rat hepatocytes, neomycin via its ability to bind Ins (1,4,5)P3 abolished the release of Ca2+ induced by added Ins (1,4,5)P3. In contrast, it did not alter the Ca2+ release initiated by the bile acid. In intact cells, neomycin had no effect on the [Ca2+]i rises promoted by taurolithocholate and vasopressin. It is suggested that the effect of taurolithocholate in liver is not mediated by Ins (1,4,5)P3 but results from a primary action on endoplasmic reticulum.  相似文献   

2.
Human platelets that had been preincubated with 5-hydroxy[(3)H]tryptamine and [(32)P]P(i) were stirred with various agents; the secretion of 5-hydroxy[(3)H]tryptamine from platelet granules and the radioactivity of platelet [(32)P]phosphopolypeptides separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis were then measured. Exposure of the platelets to collagen fibres or ionophore A23187 selectively increased the phosphorylation of polypeptides with apparent mol.wts. of 47000 (P47) and 20000 (P20) by approx. 3-fold, in association with the release of 5-hydroxy[(3)H]tryptamine. The 47000-mol.wt. phosphopolypeptide (P47) was clearly separated from platelet actin by the electrophoresis system used. Prostaglandin E(1), which inhibits platelet function by increasing platelet cyclic AMP, decreased the phosphorylation of polypeptides caused by collagen as well as the release of 5-hydroxy[(3)H]tryptamine. Prostaglandin E(1) also selectively increased the phosphorylation of distinct polypeptides with apparent mol.wts. of 24000 (P24) and 22000 (P22) by approx. 2-fold. As the phosphorylation reactions caused by collagen are probably mediated by an increase in Ca(2+) concentration in the platelet cytosol and may have a role in the release reaction [Haslam & Lynham (1977) Biochem. Biophys. Res. Commun.77, 714-722; (1978) Thromb. Res.12, 619-628], we suggest that a cyclic AMP-dependent phosphorylation of the 24000- and/or 22000-mol.wt. polypeptides caused by prostaglandin E(1) may initiate processes that decrease the Ca(2+) concentration in the cytosol, so inhibiting both the Ca(2+)-dependent phosphorylation reactions and the release reaction. Treatment of platelets with prostaglandin E(1) did not inhibit the increased phosphorylation of polypeptides with apparent mol.wts. of 47000 and 20000 (P47 and P20) caused by ionophore A23187, which may therefore short-circuit cyclic AMP-dependent mechanisms that decrease the Ca(2+) concentration in the platelet cytosol. As prostaglandin E(1) did inhibit the release of 5-hydroxy[(3)H]tryptamine by ionophore A23187, cyclic AMP may also inhibit the release reaction by additional mechanisms.  相似文献   

3.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

4.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

5.
Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization.  相似文献   

6.
The effect of inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] and caffeine on Ca2+ release from digitonin-permeabilised bovine adrenal chromaffin cells was examined by using the Ca2+ indicator fura-2 to monitor [Ca2+]. Permeabilised cells accumulated Ca2+ in the presence of ATP and addition of either Ins(1,4,5)P3 or caffeine released 17% or 40-50%, respectively, of the accumulated Ca2+, indicated by sustained rises in [Ca2+] in the cell suspension. Prior addition of Ins(1,4,5)P3 had no effect on the magnitude of the response to a subsequent addition of caffeine. The response to Ins(1,4,5)P3 was prevented by prior addition of caffeine or CaCl2, indicating that the Ins(1,4,5)P3 response was blocked by elevated [Ca2+]. The responses were essentially identical in the presence of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, indicating that the Ca2+ release was not from mitochondria or secretory granules and that a proton gradient was not required for Ca2+ accumulation into the Ins(1,4,5)P3- or caffeine-sensitive stores. Ca2+ release from the caffeine-sensitive store was selectively blocked by ryanodine. The Ins(1,4,5)P3-sensitive store was emptied by thapsigargin, which had no effect on caffeine responses. These data suggest that permeabilised chromaffin cells possess two distinct nonoverlapping Ca2+ stores sensitive to either Ins(1,4,5)P3 or caffeine and support previous conclusions that these stores possess different Ca2(+)-ATPases.  相似文献   

7.
1. myo-[3H]Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], when added to lysed platelets, was rapidly converted into [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], which was in turn converted into [3H]inositol 1,3,4-trisphosphate [Ins(1,3,4)P3]. This result demonstrates that platelets have the same metabolic pathways for interconversion of inositol polyphosphates that are found in other cells. 2. Labelling of platelets with [32P]Pi, followed by h.p.l.c., was used to measure thrombin-induced changes in the three inositol polyphosphates. Interfering compounds were removed by a combination of enzymic and non-enzymic techniques. 3. Ins(1,4,5)P3 was formed rapidly, and reached a maximum at about 4 s. It was also rapidly degraded, and was no longer detectable after 30-60 s. 4. Formation of Ins(1,3,4,5)P4 was almost as rapid as that of Ins(1,4,5)P3, and it remained detectable for a longer time. 5. Ins(1,3,4)P3 was formed after an initial lag, and this isomer reached its maximum, which was 10-fold higher than that of Ins(1,4,5)P3, at 30 s. 6. Comparison of the intracellular Ca2+ concentration as measured with fura-2 indicates that agents other than Ins(1,4,5)P3 are responsible for the sustained maintenance of a high concentration of intracellular Ca2+. It is proposed that either Ins(1,3,4)P3 or Ins(1,3,4,5)P4 may also be Ca2+-mobilizing agents.  相似文献   

8.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

9.
The effects of sphingosine, the newly described inhibitor of the enzyme protein kinase C, on human platelet activation, were studied in order to gain further information on the role of protein kinase in platelet responses. Concentrations of the drug (5-20 microM) which had little effect on protein kinase C activation as measured by the phosphorylation of the 45 kDa and 20 kDa protein substrates induced by phorbol 12-myristate 13-acetate (PMA) and thrombin, strongly inhibited platelet aggregation induced by these agonists, as well as aggregation induced by ADP and ionomycin, which caused no detectable protein kinase C activation or 5-hydroxy[14C]tryptamine[( 14C]5HT) secretion. At approx. 10-fold higher concentrations (150-200 microM), sphingosine had significant inhibitory effects on PMA and thrombin-induced 45 kDa and 20 kDa protein phosphorylation. However, at these high concentrations, the drug caused extensive membrane damage/leakiness as suggested by the substantial release of [14C]5HT and [3H]adenine from pre-loaded platelets (50-70% release of both markers), and the total quenching of quin2 fluorescence by Mn2+ in the presence of the drug. Due to the increased membrane leakiness in the presence of the drug, an apparent potentiation of agonist-induced intracellular Ca2+ elevations in quin2-loaded platelets, as well as an increase in quin2 fluorescence with the drug alone (more than 50 microM) were also observed. Despite this, however, thrombin-induced [3H]arachidonate release was severely reduced in the presence of sphingosine, underlining the inhibitory effects at the membrane level. It is concluded that the weak, if any, inhibitory effects on protein kinase C at concentrations not affecting membrane integrity, as well as the inhibitory effects of sphingosine on platelet aggregation, make it an unsuitable compound as a tool for studies on platelet stimulus-response coupling.  相似文献   

10.
The effects of electrical stimulation, muscarinic and serotonergic agonists, and caffeine on [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) content, intracellular free Ca2+ concentration ([Ca2+]i), and release of [3H]norepinephrine ([3H]NE) were studied in cultured sympathetic neurons. Neuronal cell body [Ca2+]i was unaffected by muscarinic or serotonergic receptor stimulation, which significantly increased [3H]Ins(1,4,5)P3 content. Stimulation at 2 Hz and caffeine had no effect on [3H]Ins(1,4,5)P3, but caused greater than two-fold increase in [Ca2+]i. Only 2-Hz stimulation released [3H]NE. Caffeine had no effect on the release. When [Ca2+]i was measured in growth cones, only electrical stimulation produced an increase in [Ca2+]i. The other agents had no effect on Ca2+ at the terminal regions of the neurons. We conclude that Ins(1,4,5)P3-insensitive, but caffeine-sensitive Ca2+ stores in sympathetic neurons are located only in the cell body and are not coupled to [3H]NE release.  相似文献   

11.
Evidence has accumulated in support of a role for intracellularly generated inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in raising cytosol [Ca2+] when various hormones, neurotransmitters, growth factors and other stimulants act on cell surfaces. The increase in [Ca2+] that follows stimulant-receptor interaction is accompanied by rapid hydrolysis of phosphoinositides. One product, Ins(1,4,5)P3, arising from the breakdown of phosphatidylinositol 4,5-bisphosphate was shown to promote the release of Ca2+ from non-mitochondrial stores in a variety of cells. Although platelet intracellular membranes have been implicated in the control of cytosol [Ca2+] and we previously characterized a Ca2+-sequestering mechanism associated with them, we have as yet no knowledge of how this Ca2+ store is mobilized after a stimulus-receptor interaction at the platelet surface. Using free-flow electrophoresis, we isolated and purified human platelet intracellular membranes. They show high enrichment and exclusive localization of the endoplasmic-reticulum marker NADH:cytochrome c reductase, and they sequester Ca2+ by an ATP-dependent process, reaching steady-state values in 10-12 min. Saturation with Ca2+ occurs at around 10-30 microM external Ca2+. When Ins(1,4,5)P3 is added to the 45Ca-loaded vesicles, a rapid release of Ca2+ occurs (approx. 35% in 15-30s). The magnitude of the release depends upon external [Ca2+], being maximum in the range 0.3-0.8 microM and low at external [Ca2+] greater than 1 microM. After release there is a rapid re-uptake of Ca2+, with restoration of the former steady-state values within 1 min. Half-maximal release occurs at approx. 0.25 microM-Ins(1,4,5)P3. This release and re-uptake pattern is not observed with ionophore A23187 or arachidonic acid, both of which liberate Ca2+ irreversibly. Inositol 1,4-bisphosphate was ineffective in releasing Ca2+ from these intracellular membranes. The results support the role of Ins(1,4,5)P3 as a specific intracellular mediator, transducing the action of excitatory agonists acting on the platelet surface into metabolic, mechanochemical and other functional events, known to occur during platelet activation.  相似文献   

12.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

13.
Specific, saturable and reversible binding of tritium-labeled inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) to human platelet membranes is demonstrated. The Ins(1,4,5)P3-binding sites are abundant and display high selectivity for Ins(1,4,5)P3. Other inositol phosphates exhibit much lower affinity for this site. The specific [3H]Ins(1,4,5)P3 binding was found to be modulated by pH, monovalent and divalent cations, and GTP. A sharp increase in binding occurs at slightly alkaline pH. The monovalent cations, Na+, K+ and Li+ almost double the binding at 30 mM. Mg2+ inhibits the specific [3H]Ins(1,4,5)P3 binding. At low concentrations of Ca2+, the binding is inhibited, but at concentrations higher than 5 mM the binding is potentiated and increases by almost 5-fold at 100 mM. Similar pattern of the effects is also observed for Mn2+ and Sr2+. The specific [3H]Ins(1,4,5)P3 binding is specifically inhibited by GTP. Other nucleotides also inhibit the binding but at higher concentrations. From saturation binding studies, Ca2+ potentiation seems to be due to the conversion of the receptor from the low-affinity state to the high-affinity one. In the absence of Ca2+, the Scatchard plot is nonlinear and concave, and statistically can be fitted best with two equilibrium dissociation constants (Kd values), 0.19 +/- 0.11 and 13.2 +/- 18.1 nM, respectively, for high- and low-affinity binding sites. However, in the presence of 100 mM CaCl2, the Scatchard plot reveals only the high-affinity binding sites with a Kd value of 0.32 +/- 0.15 nM. The specific Ins(1,4,5)P3 receptor in human platelets could therefore exist in multiple conformational states to regulate the intracellular Ca2+ concentration.  相似文献   

14.
Thrombin-stimulated (10 s) human platelets produce Ins(1,4,5)P3 and an additional inositol trisphosphate (InsP3), in approximately a 1:20 ratio. The major InsP3 co-migrates with Ins(1,3,4)P3 on strong-anion-exchange h.p.l.c. To identify this species unequivocally, we treated putative Ins(1,3,4)P3 obtained from thrombin-stimulated myo-[3H]inositol-labelled platelets with NaIO4/NaBH4 or 4-phosphomonoesterase. The products indicate that the major InsP3 is at least 90% D-Ins(1,3,4)P3. D-[3H]Ins(1,3,4)P3 added to saponin-permeabilized platelets is hydrolysed to an InsP2 (7.8%) and phosphorylated by a kinase to yield an inositol polyphosphate (0.9%) in 5 min. The phosphorylation product co-migrates with Ins(1,3,4,6)P4 on Partisphere WAX h.p.l.c. Under similar conditions, L-[3H]Ins(1,3,4)P3 is dephosphorylated but not phosphorylated. Relative phosphatase:kinase ratios are 8.7:1 (Vmax. values) and 0.86:1 (Km values) with respect to D-Ins(1,3,4)P3. The kinase activity is predominantly cytosolic (96.8% of total activity) in freeze-thaw-disrupted platelets, and the accumulation of its product is Ca2(+)-dependent. The activity is identified as a 6-kinase on the basis of its product's insensitivity to 5-phosphomonoesterase, resistance to periodate oxidation and co-migration with standard Ins(1,3,4,6)P4 on h.p.l.c. Incubation of platelets with beta-phorbol dibutyrate (beta-PDBu, 76 nM), causing activation of protein kinase C, results in a 57.5% inhibition (reversible by the protein kinase C inhibitor staurosporine) of Ins(1,3,4,6)P4 accumulation. alpha-PDBu, which does not stimulate protein kinase C, has no effect. Stimulation of intact platelets with thrombin results in the production of Ins(1,3,4,6)P4 (1.4-fold rise in 30 s) and Ins(1,3,4,5)P4, with the latter being the major InsP4 species. Accumulation of Ins(1,3,4,6)P4 is slightly delayed in comparison with Ins(1,3,4)P3 and is relatively small. We propose that the major route of Ins(1,3,4)P3 metabolism in stimulated human platelets is via phosphatase action.  相似文献   

15.
Ca2+ release triggered by inositol trisphosphate (Ins(1,4,5)P3) has been measured in saponin-permeabilized hepatocytes with 45Ca2+ or Quin 2. The initial rate of Ca2+ release was not greatly affected by the incubation temperature (175 +/- 40 pmol X s-1 X mg dry weight-1, at 30 degrees C versus 133 +/- 24 pmol X s-1 X mg dry weight-1 at 4 degrees C). The amount of Ca2+ released by Ins(1,4,5)P3 was not affected by pH (6.5-8.0). La3+ (100 microM) markedly inhibited the effect of 1 microM Ins(1,4,5)P3. The possibility that La3+ chelates Ins(1,4,5)P3 cannot be excluded since the effect of La3+ could be overcome by increasing the Ins(1,4,5)P3 concentration. Ins(1,4,5)P3-mediated Ca2+ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li+, can substitute for K+. Permeant anions, at concentrations above 40 mM, inhibited Ca2+ release produced by Ins(1,4,5)P3. Cl-, Br-, I-, and SO2-4 were equally effective as inhibitors. Ins(1,4,5)P3 also caused the release of 54Mn2+ and 85Sr2+ accumulated by the permeabilized hepatocytes. Our results are consistent with Ins(1,4,5)P3 promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca2+ signal.  相似文献   

16.
DePass AL  Crain RC  Hepler PK 《Planta》2001,213(4):518-524
Inositol 1,4,5 trisphosphate [Ins(1,4,5)P3] is produced from the hydrolysis of phosphatidylinositol 4,5 bisphosphate, and as part of a second-messenger signal transduction mechanism, induces release of Ca2+ from internal stores in both plant and animal systems. It is less well established how the active Ins(1,4,5)P3 is inactivated. Studies in animal cells have demonstrated two separate metabolic pathways. Ins(1,4,5)P3 can be hydrolyzed by a 5-phosphatase or phosphorylated by a 3-kinase, resulting in the formation of Ins(1,4)P2 and Ins(1,3,4,5)P4, respectively, neither of which is able to mobilize intracellular Ca2+. Plant cell extracts have been reported to have hydrolytic and kinase activities that produce Ins(1,4)P2, and Ins(4,5)P2 and Ins(1,4,5,6)P4 from Ins(1,4,5)P3. These results offer little insight into the enzyme activities in the intact plant cell since the observed activities might be confined to intracellular compartments that have little if any impact on the signaling events within the cytosol that require Ins(1,4,5)P3. To resolve the mechanism of Ins(1,4,5)P3 inactivation, we microinjected stamen hair cells of Tradescantia virginiana L. with nonhydrolysable analogs of Ins(1,4,5)P3 that have been previously shown to cause Ca2+ release from intracellular stores. Our results indicate a sustained cytosolic [Ca2+] increase when cells were injected with the 5-phosphatase-insensitive 5-monophosphorothioate derivative of Ins(1,4,5)P3, in contrast to a brief transient when injected with the 3-kinase-insensitive 3-fluoro-3-deoxy Ins(1,4,5)P3 analog. We conclude that the 5-phosphatase pathway is the preferred pathway for Ins(1,4,5)P3 inactivation in the stamen hair cells of Tradescantia.  相似文献   

17.
We report that Ins(1,3,4,5)P4 releases calcium from intracellular stores of intact Xenopus laevis oocytes, as indicated by two different techniques, Ca2(+)-sensitive microelectrodes and a fura-2 imaging system. Ins(1,3,4,5)P4 releases only 20% as much Ca2+ as the same amount of Ins(1,4,5)P3. This effect is not due to the conversion of the injected Ins(1,3,4,5)P4 to Ins(1,4,5)P3, which is known to release Ca2+, because the amount of [3H]Ins(1,3,4,5)P4 that is converted to Ins(1,4,5)P3 is extremely small, as determined using HPLC. Examination of the different current patterns induced by Ins(1,4,5)P3 and Ins(1,3,4,5)P4, when injected into voltage-clamped oocytes, provided further evidence that the Ins(1,3,4,5)P4 was not being converted back to Ins(1,4,5)P3. We investigated the effects of four compounds, three inositol trisphosphates (Ins(1,4,5)P3, Ins(2,4,5)P3, and Ins(1,3,4)P3), and Ins(1,3,4,5)P4, on Cl- current conductance in order to examine (1) the possible role of Ins(1,3,4,5)P4 in cell activation and (2) the relationships between intracellular Ca2+ and the activation of Cl- currents. Immature stage VI Xenopus laevis oocytes were voltage-clamped and injected with Ins(1,4,5)P3, Ins(2,4,5)P3, and Ins(1,3,4)P3. Ins(1,4,5)P3 and Ins(2,4,5)P3 triggered Ca2(+)-dependent Cl- currents, but Ins(1,3,4)P3 did not trigger currents nor did it release intracellular Ca2+. Ins(2,4,5)P3 was fourfold less effective at inducing the immediate Cl- current pulse than Ins(1,4,5)P3. The Cl- current pattern was quite dependent on the amount of Ins(1,4,5)P3 injected into the oocyte. Low amounts of Ins(1,4,5)P3 triggered only an immediate single Cl- current pulse, whereas large amounts triggered the immediate single pulse, followed by a quiescent period, followed by oscillating Cl- currents. In contrast to the response of Ins(1,4,5)P3, injection of Ins(1,3,4,5)P4 triggered only oscillating Cl- currents whose magnitude, but not pattern, was dependent on the amount injected into the cell. The currents generated by Ins(1,3,4,5)P4 resemble the oscillating Cl- currents triggered by large amounts of Ins(1,4,5)P3 and Ins(2,4,5)P3. Ins(1,3,4,5)P4, unlike Ins(1,4,5)P3 and Ins(2,4,5)P3, rarely caused an immediate Cl- current pulse, but caused an immediate release of calcium. Therefore, we suggest that the oscillating currents are only indirectly dependent on calcium. These [Ca2+]i and conductance measurements suggest that both Ins(1,4,5)P3 and Ins(1,3,4,5)P4 have roles in intracellular Ca2+ regulation.  相似文献   

18.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

19.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

20.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号