首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of (32)P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem.250, 4007-4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of (32)P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t((1/2))=5-12s at 25 degrees C. Between 40 and 70% of the (32)P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function.  相似文献   

2.
Single rat myocardial cells were irradiated with the UV micro-irradiation technique over a nuclear or cytoplasmic area of 5 μm of diameter. The contractile response was studied immediately after the irradiation. After 103 ergs mm−2 of UV light (254 nm), 4% and 21% of the cells irradiated in the nucleus and the cytoplasm, respectively, showed a temporary increase of the beating rhythm. Moreover, cytoplasmic regions rich in mitochondria were more excitable than other cytoplasmic regions. The ultrastructure and the survival of these cells 24 h after the irradiation did not differ from the control cells. The change of the contractile response according to the localization of the irradiation indicates that the main target organelles are mitochondria; the role of the membrane is not excluded when higher doses of irradiation are considered.  相似文献   

3.
Exposure to ionizing radiation may induce a heritable genomic instability phenotype that results in a persisting and enhanced genetic and functional change among the progeny of irradiated cells. Since radiation-induced bystander effects have been demonstrated with a variety of biological end points under both in vitro and in vivo conditions, this raises the question whether cytoplasmic irradiation or the radiation-induced bystander effect can also lead to delayed genomic instability. In the present study, we used the Radiological Research Accelerator Facility charged-particle microbeam for precise nuclear or cytoplasmic irradiation. The progeny of irradiated and the bystander human hamster hybrid (A(L)) cells were analyzed using multicolor banding (mBAND) to examine persistent chromosomal changes. Our results showed that the numbers of metaphase cells involving changes of human chromosome 11 (including rearrangement, deletion and duplication) were significantly higher than that of the control in the progeny of both nuclear and cytoplasmic targeted cells. These chromosomal changes could also be detected among the progeny of bystander cells. mBAND analyses of clonal isolates from nuclear and cytoplasm irradiations as well as the bystander cell group showed that chromosomal unstable clones were generated. Analyses of clonal stability after long-term culture indicated no significant change in the number of unstable clones for the duration of culture in each irradiated group. These results suggest that genomic instability that is manifested after ionizing radiation exposure is not dependent on direct damage to the cell nucleus.  相似文献   

4.
The glutathione (GSH) content of mouse T- and B-cells was determined and compared with the GSH content of human peripheral blood lymphocytes and human erythrocytes. Owing to the difficulty of obtaining large numbers of purified lymphocytes, a technique was developed to measure picomolar quantities of GSH. By this technique, mouse T- and B-cells, as well as mouse peripheral-blood lymphocytes, were found to contain approx. 30% of the GSH found in human peripheral-blood lymphocytes. The concanavalin A response of human peripheral-blood lymphocytes and human spleen cells was insensitive to 2-mercaptoethanol as well as to culture in 17% O2, whereas mouse lymphocyte responses were altered by 2-mercaptoethanol and inhibited by 17% O2. The capacity of human peripheral-blood lymphocytes, human erythrocytes, mouse T-cells and mouse B-cells to regenerate GSH stores after chemical oxidation by diamide was tested, and it was found that mouse cells were less capable of regenerating GSH than human erythrocytes or human peripheral-blood lymphocytes. In addition, the latter lymphocytes were less sensitive to oxidation of GSH and to inhibition of proliferation by diamide.  相似文献   

5.
The effect of neutron doses from a D-T compact neutron generator on the liver cells of adult male and female albino Swiss mice was investigated. Fast neutrons (14.5 MeV) were delivered to the whole body in a single dose or in two, four, six or eight equal doses separated by 3-day intervals. The lowest dose, 100 rem, was given for an exposure time of 6 hours and was then steadily raised to 912 rem for an exposure time of 48 hours. During exposure the neutron flux was controlled by the activation foil technique. Animals were killed for testing after each irradiation. Histological examination of the hepatocytes in the light microscope showed marked degenerative changes only after the longer irradiation periods (24, 36 and 48 h). Electron microscopy showed cytological (cytoplasmic and nuclear) changes in the hepatocytes after only 12 hours' irradiation. Densitometric scans of electron micrographs of control and 12 h-irradiated livers indicated that the control hepatocyte interphase nucleus contains approximately 72% heterochromatin, while the irradiated nucleus contains only 64% heterochromatin.  相似文献   

6.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction.  相似文献   

7.
BACKGROUND: Majority of hematopoietic cells die by apoptosis after irradiation with ionizing radiation. In present study it is shown that human promyelocytic leukemia HL-60 cells can undergo two different types of apoptosis, premitotic and postmitotic. METHODS: HL-60 cells were irradiated with doses 8 and 20 Gy. For apoptosis detection APO2.7 antigen (mitochondrial membrane specific protein) expression without and with permeabilization by digitonin was used. This method was compared with flow-cytometric analysis of cell light scattering properties and determination of subG1 DNA. RESULT: Cells irradiated with high dose (20 Gy) died rapidly by premitotic apoptosis (interphase death) from all phases of cell cycle. 2 hours after irradiation cells with subdiploid DNA content and cells stained by APO2.7 after digitonin permeabilization appeared. After 6 hours 40% of cells were apoptotic, nonapoptotic cells were mainly in G1-phase. Lower dose (8 Gy) after 6 hours of irradiation caused accumulation of cells in S-phase. After 24 hours majority of cells was in G2-phase and apoptotic cells appeared (subG1 peak, APO2.7 with permeabilization). CONCLUSION: Data presented herein indicate that mitochondrial membrane protein-specific antibody APO2.7 after permeabilization is a useful marker for detection of early apoptotic cells dying by premitotic and postmitotic apoptosis.  相似文献   

8.
The protective effect of Vitamins C, E and beta-carotene against gamma-ray-induced DNA damage in human lymphocytes in vitro was investigated. Cultured lymphocytes were exposed to increasing concentration of these vitamins either before or after irradiation with 2Gy of gamma-rays and DNA damage was estimated using micronucleus assay. A radioprotective effect was observed when antioxidant vitamins were added to cultured cells before as well after irradiation; the strongest effect was observed when they were added no later than 1h after irradiation. The radioprotective effect of vitamins also depended on their concentration; Vitamins C added at low concentration (1 microg/ml) before exposure of the cells to radiation prevented induction of micronuclei. Vitamin E at the concentration above 2 microg/ml decreased the level of radiation-induced micronuclei when compared to the cells irradiated without vitamin treatment. beta-Carotene was effective at all tested concentrations from 1 to 5 microg/ml and reduced the number of micronuclei in irradiated cells. The vitamins had no effect on radiation-induced cytotoxicity as measured by nuclear division index. The radioprotective action of antioxidant Vitamins C, E and beta-carotene was dependent upon their concentration as well as time and sequence of application.  相似文献   

9.
The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle.  相似文献   

10.
Lymphocytes isolated from the rabbit peripheral blood were irradiated in vitro with 200, 400 and 1000 r doses and cultivated with phytohemagglutinin (PHA) doses and cultivated with phytohemagglutinin (PHA) at 37 degrees C during 48 hours. In several experiments cycloheximide, inhibiting protein synthesis, was added to the cells 60 minutes before and 30 minutes after irradiation. There was no apparent difference in the viability of irradiated cells with or without cycloheximide. The ability of lymphocytes of the popliteal lymph nodes for proliferation after PHA injection into one of the hind foot-pads of the irradiated mice was studied, as well. The injection of cycloheximide or puromycin into one of the hind foot-pads immediately after irradiation of the animals augmented the proliferation of lymphocytes in this extremity in comparison with contralateral one, 1.5-2 times. Cytosine arabinoside, inhibiting DNA synthesis, was not effective under these conditions.  相似文献   

11.
In experiments on rat thymocytes obtained 15 min, 2 h and 4 h after irradiation of animals with the dose of 10 Gy it was found that 15 min and 4 h following irradiation changes occurred in their membranes increasing the lifetime of the excited state of anilinonaphthalene sulfonate and hydrofobicity and viscosity of its microenvironment. The indicated parameters did not vary from the controls 2 h following irradiation. The analysis of the data obtained prompted a suggestion that the observed changes were associated with the structural rearrangements in the plasma membrane rather than with its destruction. Model experiments on irradiated thymocyte suspensions showed that there was a correlation between changes in the cell membrane and meabolic processes.  相似文献   

12.
Electron microscopic analysis of U V-irradiated tilapia sperm showed that with irradiation dose of 1800 J m−2 min−1, an irradiation duration of 0.5 min caused decondensation of sperm chromatin. This phenomenon of chromatin decondensation reached a peak after l.5min of irradiation, where ∼ 15% of the sperm showed total decondensation, and was less apparent after 3 min of irradiation or more. Damage to the cytoplasmic membrane and nuclear envelope could be seen in cells that underwent total decondensation. As the duration of irradiation increased, cytoplasmic membrane and nuclear envelope defects appeared more severe, the mitochondria were affected and appeared as empty capsules, and sperm cells tended to lose their tails. Based on these results and others reported in the literature, we propose an explanation for the 'Hertwig curve' obtained in tilapia using UV irradiation. Sperm cells with decondensed chromatin and damaged cytoplasmic membrane and nuclear envelope, activate the 'developmental switch' when they penetrate the egg, but their pronuclei are subjected to cytoplasmic nuclease digestion. Consequently, the maternal pronucleus is the only functional pronucleus in the zygote, and therefore, only haploid embryos with the exclusive maternal genome are formed. If the paternal pronucleus is not digested, these embryos will die due to improper expression of the paternal genes.  相似文献   

13.
Using microbeam to irradiate human-hamster hybrid AL cells withdefined number of a particles in a highly localized spatial region, this paper showed that cytoplasmic irradiation induced very little toxicity. For example, the cell killing by 4 a particle traversal through the cytoplasm was about 10%, and about 70% cells survived after their cytoplasm was irradiated with 32 a particles. In contrast, the survival fractions for nuclear irradiation at the same doses were 35% and less than 1% respectively. Mutation induction showed that while nuclear irradiation induced 3-4-fold more CD59- mutants than cytoplasmic irradiation at equivalent particle traversal, at an equitoxic dose level of 90% survival, the latter exposure mode induced 3.3-fold more mutants than nuclear irradia-tion. Moreover, using multiplex PCR to analyze five marker genes on chromosome 11 (WT, CAT, PTH, APO-A1 and RAS), the results showed that the majority of mutants induced by cytoplasmic irradiation had retained all of the marker genes analyzed. By comparison, the proportion of mutants suffering loss of additional chromosomal markers increased with increasing number of particle traversal through nuclei.  相似文献   

14.
PHA-stimulated human lymphocytes in the G1 stage were irradiated with UV radiation and X-rays, and the cells were analyzed for chromosomal aberrations in the first mitotic division. The frequency of dicentric chromosomes after single X-irradiation in the G1 stage was about twice the yield in the G0 stage. No increase in the yield of dicentrics was observed after combined irradiation with UV and X-rays. This is contrary to the finding for G0 lymphocytes, where a 2-fold increase of chromosome aberrations was observed. UV irradiation of G1 lymphocytes induced chromatid-type aberrations whereas no significant yield of dicentric chromosomes was observed. This is in agreement with previous findings in Chinese hamster cells in the G1 stage [7]. Irradiation of G0 lymphocytes with UV radiation induce a low frequency of dicentric chromosomes. Thus, the present data indicate that the ratio between chromosome-type and chromatid-type aberrations is different in the G1 and G0 stages in human lymphocytes irradiated with UV radiation.  相似文献   

15.
Cytoplasmic and membrane fractions prepared from human peripheral-blood lymphocytes both contained cyclic AMP-dependent protein kinase activity and endogenous protein kinase substrates. Protein kinase activity in the particulate fractions was not eluted with 0.25 M-NaCl, suggesting that it was not derived from non-specifically absorbed soluble cytoplasmic protein kinase. Nor was the particulate protein kinase activity eluted by treatment with cyclic AMP, suggesting that the catalytic subunit is membrane-bound and arguing against cyclic AMP-induced translocation of particulate activity. Cyclic AMP-dependent protein-phosphorylating activity in the cytoplasmic fraction was highly sensitive to inhibition by Mn2+, and was co-eluted from DEAE-cellulose primarily with type-I rabbit skeletal-muscle kinase. Cyclic AMP-dependent phosphorylating activity in the plasma-membrane fractions was stimulated at low [Mn2+] and inhibited only at high [Mn2+]. When solubilized with Nonidet P-40, plasma-membrane protein kinase was co-eluted from DEAE-cellulose with type-II rabbit muscle kinase. These differences, together with the strong association of the particulate kinases with the particulate fraction, suggest the possibility of compartmentalized protein phosphorylation in intact lymphocytes.  相似文献   

16.
Influence of ionizing radiation, ions of iron and their chelate complexes on the oxidative status of blood serum of rats has been investigated. Animals were irradiated by gamma-rays 60Co at a dose of 4 Gy. Ions of iron and iron chelates with nitrilotriacetic acid and citric acid were introduced into animals intra-abdominally at a doze of 10 mg of iron on 1 kg of body weight. The oxidative status of blood serum was determined according to the estimated content of oxidizing peroxide equivalents which oxidize ferrous iron in ferric iron with the subsequent estimation of ferric iron by means of xylenol orange. We also estimated the total content of iron in blood serum using ferrozine as an indicator. The oxidative status was defined 24 and 96 hours after irradiation and 2 hours after introduction of iron ions and their chelates. The research conducted has shown that the concentration of oxidizing peroxide equivalents in serum and the total iron concentration increase 1.47 times and 1.63 times correspondingly 24 hours after irradiation. The increase in the content of oxidizing peroxide equivalents and iron owing to Fenton's reaction can lead to the appearance of OH* radical and raise the level of damage of nuclear and membrane structures in irradiated cells. 2 hours after introduction of iron ions and their chelates, the content of oxidizing peroxide equivalents increased in the blood serum of irradiated and non-irradiated rats, and the maximum effect was observed when introducing ferrous iron and its chelate with citric acid.  相似文献   

17.
David  Scott 《Cell proliferation》1969,2(4):295-305
The persistence of unstable chromosome-type aberrations in peripheral blood lymphocytes of irradiated individuals has led to the proposal that some lymphocytes survive for many years in vivo without undergoing mitosis (Fitzgerald, 1964). It has recently been shown, however, that plasma from irradiated individuals can induce chromosomal damage in cultures of normal blood lymphocytes (Hollowell & Littlefield, 1968) even when the plasma donors were irradiated 7 years earlier (Goh & Sumner, 1968). Goh (1968) has therefore suggested that ‘An alternate explanation to the “long-lived cell” theory proposed by others…would be that a substance is produced or activated by total body irradiation and remains capable of affecting the chromosomes for extensive lengths of time'. The present results show that a lymphocyte chromosome-breaking factor can be induced in the plasma of blood irradiated in vitro as well as in vivo. All of the aberrations induced by this ‘plasma factor’and those reported by other workers can be interpreted as being of the chromatid type. Before the long-lived lymphocyte hypothesis can be brought into serious disrepute, it must be shown that the plasma factor can induce aberrations of the same type as persist after in vivo irradiation (i.e. unequivocal chromosome-type aberrations, such as dicentrics and rings) and that these can be induced in vivo.  相似文献   

18.
PURPOSE: to characterize radiation-induced apoptosis in human cells using Fourier transform infrared microspectroscopy (FT-IRM) as a new analytical tool. MATERIAL AND METHODS: Normal human circulating lymphocytes were given a gamma ray dose of 6 Gy, or treated with t-butyl hydroperoxide (t-BuOH). HaCaT keratinocytes were given a dose of 20 Gy. Cells were deposited on ZnS windows for infrared spectral acquisition 2 days and 2 h after irradiation and 2 h after t-BuOH treatment. Apoptosis was simultaneously assessed by flow cytometry analysis of cells displaying annexin-V-positive staining. RESULTS: The flow cytometry study showed that about 90% of sham and irradiated cells were annexin-V negative 2 h after irradiation. Two days after irradiation, 68% of lymphocytes and 76% of HaCaT cells were apoptotic, as well as 43% of lymphocytes treated with t-BuOH. In infrared spectra of these apoptotic cells, qualitative and quantitative changes were observed. In the 960-1245 and 1690-1720 cm-1 ranges, mainly attributed to nucleic acids, changes corresponding to conformational changes in DNA were associated with a decrease in the amount of detectable DNA. Conformational changes were also observed in secondary protein structure, in particular an increase in the amount of beta structures. These DNA and protein changes were associated with an increase in the detectable amount of lipids in apoptotic HaCaT cells only. Two hours after irradiation, depending on the dose and (or) the cell type, qualitative and quantitative changes were observed in the IR spectra in the amide I and amide II bands, mainly attributed to proteins. These changes were associated with a significant decrease in the 1700-1750 cm-1 range, mainly attributed to the -C=O ester groups of DNA and phospholipids, in the irradiated HaCaT cells only. CONCLUSION: Our results are in agreement with biochemical published data on radiation-induced apoptosis, and show that DNA is the first cellular target of radiation-induced apoptosis, which, however, also requires conformational changes and synthesis of cell proteins. They also demonstrate that FT-IRM may be useful for assessing the early radiation damage at the molecular level in human cells.  相似文献   

19.
Vinnikov V  Lloyd D  Finnon P 《Mutation research》2012,731(1-2):107-116
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.  相似文献   

20.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号