首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. In order to determine what structural features of the oligosaccharide were required for fucosylation or where in the processing pathway fucosylation occurred, influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, [5,6-3H]fucose and [1-14C]mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the [14C]mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the [14C]mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the [3H]fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the [14C]mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.  相似文献   

2.
Baby-hamster kidney (BHK) cells were grown continuously in long-term monolayer culture in the presence of Swainsonine, an inhibitor of alpha-mannosidase II, a processing enzyme involved in glycoprotein biosynthesis. The asparagine-linked oligosaccharides (N-glycans) were isolated from Pronase-digested cells by gel filtration, ion-exchange chromatography and affinity chromatography on concanavalin A--Sepharose and lentil lectin--Sepharose. The major N-glycans, analysed by 500 MHz 1H-n.m.r. spectroscopy, were identified as hybrid structures containing five mannose residues and neutral high-mannose N-glycans. The major hybrid species contained a core-substituted fucose alpha(1----6) residue and a NeuNAc alpha(2----3)Gal beta(1----4)GlcNAc terminal sequence; smaller amounts of non-sialylated and non-fucosylated hybrid structures were also detected. Swainsonine-treated cells also produced neutral oligosaccharides containing a single reducing N-acetylglucosamine residue substituted with polymannose sequences. The glycopeptide composition of Swainsonine-treated BHK cells resembles closely that of the ricin-resistant BHK cell mutant, RicR21 [P. A. Gleeson, J. Feeney and R. C. Hughes (1985) Biochemistry 24, 493-503], except the hybrid structures of RicR21 cells contain three, not five, mannose residues. Like RicR21 cells, Swainsonine-treated BHK cells showed a greatly increased resistance to ricin cytotoxicity, but not to modeccin, another galactose-binding lectin. These effects were readily reversed on removal of Swainsonine and growth in normal medium.  相似文献   

3.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

4.
We investigated the ability of a baculovirus-insect cell system to produce sialylated glycoproteins. Despite the presence of enzymes for synthesizing complex-type N-glycans, the most frequent structure of insect N-glycan is the paucimannosidic type, Man(3)GlcNAc(2)(+/-Fuc). The reason for the overwhelming assembly of paucimannosidic N-glycans is not yet well understood. We hypothesized that this predominance might be due to insect-specific, Golgi-associated beta-N-acetylglucosaminidase (GlcNAcase)-mediated removal of N-acetylglucosamine residues from the precursor N-glycan, thereby preventing its galactosylation and terminal sialylation. As we expected, the suppression of intrinsic GlcNAcase activity with a specific inhibitor, 2-acetamido-1,2-dideoxynojirimycin, allowed the accumulation of sialylated glycoproteins in the supernatants of insect cell cultures after baculoviral infection. Our observation indicates that GlcNAcase-dependent depletion of N-acetylglucosamine residues from intermediate N-glycans is critical for the assembly of paucimannosidic N-glycans in insect cells and, more importantly, that insect cells (under specific conditions) retain the ability to construct sialylated N-glycans like those in mammalian cells.  相似文献   

5.
Insects, yeasts and plants generate widely different N-glycans, the structures of which differ significantly from those produced by mammals. The processing of the initial Glc2Man9GlcNAc2 oligosaccharide to Man8GlcNAc2 in the endoplasmic reticulum shows significant similarities among these species and with mammals, whereas very different processing events occur in the Golgi compartments. For example, yeasts can add 50 or even more Man residues to Man(8-9)GlcNAc2, whereas insect cells typically remove most or all Man residues to generate paucimannosidic Man(3-1)GlcNAc2N-glycans. Plant cells also remove Man residues to yield Man(4-5)GlcNAc2, with occasional complex GlcNAc or Gal modifications, but often add potentially allergenic beta(1,2)-linked Xyl and, together with insect cells, core alpha(1,3)-linked Fuc residues. However, genomic efforts, such as expression of exogenous glycosyltransferases, have revealed more complex processing capabilities in these hosts that are not usually observed in native cell lines. In addition, metabolic engineering efforts undertaken to modify insect, yeast and plant N-glycan processing pathways have yielded sialylated complex-type N-glycans in insect cells, and galactosylated N-glycans in yeasts and plants, indicating that cell lines can be engineered to produce mammalian-like glycoproteins of potential therapeutic value.  相似文献   

6.
Kim MW  Rhee SK  Kim JY  Shimma Y  Chiba Y  Jigami Y  Kang HA 《Glycobiology》2004,14(3):243-251
Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.  相似文献   

7.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

8.
N-glycans of neuropsin (serine protease in the murine hippocampus) expressed in Trichoplusia ni cells were released from the glycopeptides by digestion with glycoamidase A (from sweet almond), and the reducing ends of the oligosaccharides were reductively aminated with 2-aminopyridine. The derivatized N-glycans were separated and structurally identified by a two dimensional high-performance liquid chromatography (HPLC) mapping technique on two kinds of HPLC columns. Fourteen different major N-glycan structures were identified, of which 6 were high-mannose type (9.1%), and the remaining 8 were paucimannosidic type. The presence of insect specific N-glycan structures containing both 1,3- and 1,6- di-fucosylated innermost N-acetylglucosamine residue (23.3%), as below, was also confirmed by 600 MHz 1H-NMR spectroscopy.  相似文献   

9.
beta-1,4-Galactosyltransferase-I (beta4Gal-T1) transfers galactose from UDP-galactose to N-acetylglucosamine (GlcNAc) residues of the branched N-linked oligosaccharide chains of glycoproteins. In an N-linked biantennary oligosaccharide chain, one antenna is attached to the 3-hydroxyl-(1,3-arm), and the other to the 6-hydroxyl-(1,6-arm) group of mannose, which is beta-1,4-linked to an N-linked chitobiose, attached to the aspargine residue of a protein. For a better understanding of the branch specificity of beta4Gal-T1 towards the GlcNAc residues of N-glycans, we have carried out kinetic and crystallographic studies with the wild-type human beta4Gal-T1 (h-beta4Gal-T1) and the mutant Met340His-beta4Gal-T1 (h-M340H-beta4Gal-T1) in complex with a GlcNAc-containing pentasaccharide and several GlcNAc-containing trisaccharides present in N-glycans. The oligosaccharides used were: pentasaccharide GlcNAcbeta1,2-Manalpha1,6 (GlcNAcbeta1,2-Manalpha1,3)Man; the 1,6-arm trisaccharide, GlcNAcbeta1,2-Manalpha1,6-Manbeta-OR (1,2-1,6-arm); the 1,3-arm trisaccharides, GlcNAcbeta1,2-Manalpha1,3-Manbeta-OR (1,2-1,3-arm) and GlcNAcbeta1,4-Manalpha1,3-Manbeta-OR (1,4-1,3-arm); and the trisaccharide GlcNAcbeta1,4-GlcNAcbeta1,4-GlcNAc (chitotriose). With the wild-type h-beta4Gal-T1, the K(m) of 1,2-1,6-arm is approximately tenfold lower than for 1,2-1,3-arm and 1,4-1,3-arm, and 22-fold lower than for chitotriose. Crystal structures of h-M340H-beta4Gal-T1 in complex with the pentasaccharide and various trisaccharides at 1.9-2.0A resolution showed that beta4Gal-T1 is in a closed conformation with the oligosaccharide bound to the enzyme, and the 1,2-1,6-arm trisaccharide makes the maximum number of interactions with the enzyme, which is in concurrence with the lowest K(m) for the trisaccharide. Present studies suggest that beta4Gal-T1 interacts preferentially with the 1,2-1,6-arm trisaccharide rather than with the 1,2-1,3-arm or 1,4-1,3-arm of a bi- or tri-antennary oligosaccharide chain of N-glycan.  相似文献   

10.
The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by β1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and β1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.  相似文献   

11.
Band-3 glycoprotein was purified from human blood-group-A erythrocyte membranes by selective solubilization and gel chromatography on Sepharose 6B in the presence of sodium dodecyl sulphate. The purified glycoprotein was subjected to hydrazinolysis in order to release the carbohydrate moiety. The released oligosaccharides were N-acetylated and applied to a column of DEAE-cellulose. Most of the band-3 oligosaccharides obtained were found to be free of sialic acids. When this neutral fraction was subjected to gel chromatography on a column of Sephadex G-50, two broad peaks were observed indicating that the band-3 glycoprotein was heterogeneous in the size of the oligosaccharide moieties. All fractions from gel chromatography were found to contain galactose, mannose, N-acetylglucosamine and fucose. The higher-molecular-weight (mol.wt. 3000-8000) peak consisted of fucose, mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine in a molar proportion of 1.6:3.0:8.4:10.5:0.2. Most of these oligosaccharides were digested with a mixture of beta-galactosidase and beta-N-acetylhexosaminidase after alpha-L-fucosidase treatment to give a small oligosaccharide with the structure alpha Man2-beta Man-beta GlcNAc-GlcNAc. Methylation studies and limited degradation by nitrous acid deamination showed that the oligosaccharides contained the repeating disaccharide Gal beta 1----4GlcNAc beta 1----3, with branching points at C-6 of some of the galactose residues. These results indicate that a major portion of the band-3 oligosaccharide has a common core structure, with heterogeneity in the numbers of the repeating disaccharides, and contains fucose residues both in the peripheral portion and in the core portion. Haemagglutination tests were also carried out to determine the blood-group specificities of the glycoprotein and the results demonstrated the presence of both blood-group-H and I antigenic activities.  相似文献   

12.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

13.
In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focused on its glycosphingolipids, which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and western blotting, we have now analyzed the peptide N-glycosidase A-released N-glycans of adults of this species. The presence of hybrid bi- and triantennary N-glycans, some modified by core alpha1,6-fucose and peripheral phosphorylcholine, was demonstrated by LC/electrospray ionization (ESI)-Q-TOF-MS/MS, as was the presence of paucimannosidic N-glycans, some of which carry core alpha1,3-fucose, and oligomannosidic oligosaccharides. Western blotting verified the presence of protein-bound phosphorylcholine and core alpha1,3-fucose, whereas glycosyltransferase assays showed the presence of core alpha1,6-fucosyltransferase and Lewis-type alpha1,3-fucosyltransferase activities. Although, the unusual tri- and tetrafucosylated glycans found in the model nematode Caenorhabditis elegans were not found, the vast majority of the N-glycans found in A. suum represent a subset of those found in C. elegans; thus, our data demonstrate that the latter is an interesting glycobiological model for parasitic nematodes.  相似文献   

14.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

15.
A comparative study was undertaken to characterize the linkages of L-fucose in N-glycans of plasma membrane glycoproteins from Morris hepatoma 7777, host liver and kidney cortex, as well as from rat serum. After in-vivo radiolabelling of rats with L-[6-3H]fucose, the asparagine-linked carbohydrate chains were released from delipidated plasma membrane glycoproteins, as well as from serum glycoproteins, by enzymic digestion with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase from Flavobacterium meningosepticum. They were then converted to their corresponding oligosaccharide alditols by reduction with sodium borohydride. Two specific alpha-L-fucosidases from almond emulsin and from Aspergillus niger, combined with affinity HPLC on immobilized Aleuria aurantia lectin were used to study the linkage of L-fucose in the oligosaccharide chains. Fucose alpha 1-2 linked to galactose, was present only in the plasma membrane of hepatoma 7777 (18% of total L-[3H]fucose in N-glycans), but was not expressed in host liver, kidney cortex and serum. None of the investigated sources contained an appreciable amount of fucose alpha 1-3/4 linked to N-acetyl-D-glucosamine. All the radioactively labelled oligosaccharides from host liver, kidney cortex and serum, but only 82% of these oligosaccharides from hepatoma, contained alpha-fucosyl residues linked at the C6 position of the proximal N-acetyl-D-glucosamine.  相似文献   

16.
The present paper describes the structures of the N-linked oligosaccharides of the human-immunodeficiency-virus (HIV) envelope glycoprotein gp120 (cloned from the HTLV-III B isolate and expressed as a secreted fusion protein after transfection of Chinese-hamster ovary cells), which is known to bind with high affinity to human T4-lymphocytes. Oligosaccharides were released from peptide by hydrazinolysis, fractionated by paper electrophoresis, high-performance lectin-affinity chromatography and Bio-Gel P-4 column chromatography, and their structures determined by sequential exoglycosidase digestions in conjunction with methylation analysis. The glycoprotein was found to be unique in its diversity of oligosaccharide structures. These include high-mannose type and hybrid type, as well as four categories of complex-type chains: mono-, bi-, tri- and tetra-antennary, with or without N-acetyl-lactosamine repeats, and with or without a core-region fucose residue. Among the sialidase-treated oligosaccharides, no less than 29 structures were identified as follows: (formula; see text) where G is galactose, GN is N-acetylglucosamine, M is mannose, F is fucose, and '+/- ' means that residues are present in a proportion of chains. The actual number of oligosaccharide structures is much greater, since before desialylation there was evidence that, among the hybrid and complex-type chains, all but 6% contained sialic acid at the C-3 position of terminal galactose residues, and partially sialylated forms of the bi- and multi-antennary chains were present. Detailed evidence for the proposed oligosaccharide sequences will be published as a supplementary paper [T. Mizuochi, M. W. Spellman, M. Larkin, J. Solomon, L. J. Basa & T. Feizi (1988) Biomed. Chromatogr., in the press].  相似文献   

17.
Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.  相似文献   

18.
The fucosyltransferase activities of three insect cell lines, MB-0503 (from Mamestra brassicae), BM-N (from Bombyx mori) and Sf-9 (from Spodoptera frugiperda), were investigated and compared with that of honeybee venom glands. Cell extracts and venom gland extracts were incubated with GDP-[14C]fucose and glycopeptides isolated from human IgG and from bovine fibrin. The labeled oligosaccharide products were released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase A, fluorescence marked with 2-aminopyridine and analyzed both by reversed-phase and size-fractionation HPLC. They were identified by their elution positions before and after exoglycosidase treatment in comparison with standard oligosaccharides. These experiments revealed distinct fucosylation potentials in the three cell lines tested. While MB-0503 cells, like honeybee venom glands, are able to transfer fucose into alpha 1-3 and alpha 1-6 linkage to the innermost N-acetylglucosamine, only alpha 1-6-fucosyl linkages were detected with BM-N and Sf-9 cells.  相似文献   

19.
For many years, polyclonal antibodies raised against the plant glycoprotein horseradish peroxidase have been used to specifically stain the neural and male reproductive tissue of Drosophila melanogaster. This epitope is considered to be of carbohydrate origin, but no glycan structure from Drosophila has yet been isolated that could account for this cross-reactivity. Here we report that N-glycan core alpha1,3-linked fucose is, as judged by preabsorption experiments, indispensable for recognition of Drosophila embryonic nervous system by anti-horseradish peroxidase antibody. Further, we describe the identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and high performance liquid chromatography of two Drosophila N-glycans that, as already detected in other insects, carry both alpha1,3- and alpha1,6-linked fucose residues on the proximal core GlcNAc. Moreover, we have isolated three cDNAs encoding alpha1,3-fucosyltransferase homologues from Drosophila. One of the cDNAs, when transformed into Pichia pastoris, was found to direct expression of core alpha1,3-fucosyltransferase activity. This recombinant enzyme preferred as substrate a biantennary core alpha1,6-fucosylated N-glycan carrying two non-reducing N-acetylglucosamine residues (GnGnF6; Km 11 microm) over the same structure lacking a core fucose residue (GnGn; Km 46 microm). The Drosophila core alpha1,3-fucosyltransferase enzyme was also shown to be able to fucosylate N-glycan structures of human transferrin in vitro, this modification correlating with the acquisition of binding to anti-horseradish peroxidase antibody.  相似文献   

20.
Previously, we have shown that simple paucimannosidic N-glycan structures in insect Drosophila S2 cells arise mainly because of β-N-acetylglucosaminidase (GlcNAcase) action. Thus, in an earlier report, we suppressed GlcNAcase activity and clearly demonstrated that more complex N-glycans with two terminal N-acetylglucosamine (GlcNAc) residues were then synthesized. In the present work, we investigated the synergistic effects of β-1,4-galactosyltransferase (GalT) expression and GlcNAcase suppression on N-glycan patterns. We found that the N-glycan pattern of human erythropoietin secreted by engineered S2 cells expressing GalT but not GlcNAcase was complete, even in small portion, except for sialylation; the N-glycan structures had two terminal galactose (Gal) residues. When GalT was expressed but GlcNAcase was not inhibited, N-glycan with GlcNAc and Gal at only one branch end was synthesized. Therefore, it will be possible to express a complete functional human glycoprotein in engineered Drosophila S2 cells by suppressing GlcNAcase and co-expressing additional glycosyltransferases of N-glycosylation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号