首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Reversible inhibition phenomena are analyzed for enzymatic systems involving covalent intermediates, where the inhibitor can bind to the pure enzyme, the Henri-Michaelis complex or the covalent intermediate, or to two or three of these enzyme forms. Classical competitive, non-competitive or un-competitive phenomena can be observed in some cases but unexpected features are also observed. Complex phenomena sometimes prevail where increased kcat/Km values can be accompanied by decreased or increased kcat values.  相似文献   

2.
PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5′-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.  相似文献   

3.
I A Rose  J V Warms 《Biochemistry》1985,24(15):3952-3957
Minimum values for the content of covalent intermediates in the equilibria of muscle aldolase with its cleavable substrates have been determined by acid denaturation/precipitation. Ribulose 1,5-bisphosphate, a nonsubstrate that binds well to aldolase in the native state, does not form a covalent complex that is acid precipitable. The insoluble protein complexes with substrates fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, representing approximately 50% and approximately 60% of total bound substrate, are much more stable in acid and alkali than that with substrate 5-deoxyfructose 1,6-bisphosphate, suggesting that they have the form of protein-bound N-glycosides. Whether such complexes exist on the enzyme in the native state in addition to being formed subsequent to denaturation is unresolved. Both the acid-precipitable and nonprecipitable forms of fructose 1,6-bisphosphate are converted to triose phosphate products at the same rate, providing no kinetic evidence for a pool that is not on the main reaction path. Total fructose 1,6-bisphosphate liganded to enzyme returns to the free solution about 9 times for each net cleavage reaction. It is still not clear whether this is limited by the cleavage step or by release of glyceraldehyde phosphate.  相似文献   

4.
Trypanosoma rangeli sialidase is a glycoside hydrolase (family GH33) that catalyzes the cleavage of alpha-2-->3-linked sialic acid residues from sialoglycoconjugates with overall retention of anomeric configuration. Retaining glycosidases usually operate through a ping-pong mechanism, wherein a covalent intermediate is formed between the carbohydrate and an active site carboxylic acid of the enzyme. Sialidases, instead, appear to use a tyrosine as the catalytic nucleophile, leaving the possibility of an essentially different catalytic mechanism. Indeed, a direct nucleophilic role for a tyrosine was shown for the homologous trans-sialidase from Trypanosoma cruzi, although itself not a typical sialidase. Here we present the three-dimensional structures of the covalent glycosyl-enzyme complexes formed by the T. rangeli sialidase with two different mechanism-based inactivators at 1.9 and 1.7 Angstroms resolution. To our knowledge, these are the first reported structures of enzymatically competent covalent intermediates for a strictly hydrolytic sialidase. Kinetic analyses have been carried out on the formation and turnover of both intermediates, showing that structural modifications to these inactivators can be used to modify the lifetimes of covalent intermediates. These results provide further evidence that all sialidases likely operate through a similar mechanism involving the transient formation of a covalently sialylated enzyme. Furthermore, we believe that the ability to "tune" the inactivation and reactivation rates of mechanism-based inactivators toward specific enzymes represents an important step toward developing this class of inactivators into therapeutically useful compounds.  相似文献   

5.
R Bone  A B Shenvi  C A Kettner  D A Agard 《Biochemistry》1987,26(24):7609-7614
The structure of the complex formed between alpha-lytic protease, a serine protease secreted by Lysobacter enzymogenes, and N-tert-butyloxycarbonylalanylprolylvaline boronic acid (Ki = 0.35 nM) has been studied by X-ray crystallography to a resolution of 2.0 A. The active-site serine forms a covalent, nearly tetrahedral adduct with the boronic acid moiety of the inhibitor. The complex is stabilized by seven hydrogen bonds between the enzyme and inhibitor with additional stabilization arising from van der Waals interactions between enzyme and inhibitor side chains and the burying of 330 A2 of hydrophobic surface area. Hydrogen bonding between Asp-102 and His-57 remains intact in the enzyme-inhibitor complex, and His N epsilon 2 is well positioned to donate its hydrogen to the leaving group. Little change in the positions of protease residues was observed on complex formation (root mean square main chain deviation = 0.13 A), suggesting that in its native state the enzyme is complementary to tetrahedral reaction intermediates or to the nearly tetrahedral transition state for the reaction.  相似文献   

6.
Distribution of reaction intermediates on chicken liver fatty acid synthase   总被引:1,自引:0,他引:1  
V E Anderson  G G Hammes 《Biochemistry》1985,24(9):2147-2154
The distributions of covalent intermediates in the reaction cycle catalyzed by chicken liver fatty acid synthase were studied. In isotope-trapping experiments, 30% of [1-14C] acetyl-enzyme and 6.7% of [2-14C]malonyl-enzyme are converted to long-chain fatty acids, indicating the initiation reaction is partially random. The 3-hydroxybutyryl intermediate is located on the tryptic peptide which contains the 4'-phosphopantetheine (greater than 90%), while the C4-C18 saturated intermediates are distributed both on this peptide and on the peptide that contains the active cysteine. The ratio of intermediates on the two peptides is about unity for chain lengths less than C14, but the amount on the active cysteine progressively decreases for chain lengths of C14, C16, and C18 with trypsinized enzyme. The distributions of carbon chain lengths for the saturated or 3-keto intermediates when acetoacetyl-labeled trypsinized enzyme is incubated with limiting malonyl coenzyme A or NADPH, respectively, show large fractions both of unreacted enzyme and of C16 or longer intermediates. A detailed analysis suggests that the initial condensation and reduction steps are slower than the analogous reactions with longer chain length intermediates. The 3-keto intermediate comprises over 70% of each chain length intermediate detected when NADPH is the limiting substrate, indicating the reduction of the 3-keto intermediates is at least 2 times slower than the reduction of the unsaturated intermediates.  相似文献   

7.
Guo X  Li Y  Peng K  Hu Y  Li C  Xia B  Jin C 《The Journal of biological chemistry》2005,280(47):39601-39608
Arsenate reductase encoded by the chromosomal arsC gene in Bacillus subtilis catalyzes the intracellular reduction of arsenate to arsenite, which is then extruded from cells through an efficient and specific transport system. Herein, we present the solution structures and backbone dynamics of both the reduced and oxidized forms of arsenate reductase from B. subtilis. The overall structures of both forms are similar to those of bovine low molecular weight protein-tyrosine phosphatase and arsenate reductase from Staphylococcus aureus. However, several features of the tertiary structure and mobility are notably different between the reduced and oxidized forms of B. subtilis arsenate reductase, particularly in the P-loop region and the segment Cys(82)-Cys(89). The backbone dynamics results demonstrated that the reduced form of arsenate reductase undergoes millisecond conformational changes in the functional P-loop and Cys(82)-Cys(89), which may facilitate the formation of covalent intermediates and subsequent reduction of arsenate. In the oxidized form, Cys(82)-Cys(89) shows motional flexibility on both picosecond-to-nanosecond and possibly millisecond time scales, which may facilitate the reduction of the oxidized enzyme by thioredoxin to regenerate the active enzyme. Overall, the internal dynamics and static structures of the enzyme provide insights into the molecular mechanism of arsenate reduction, especially the reversible conformational switch and changes in internal motions associated with the catalytic reaction.  相似文献   

8.
B M Dunn  A L Fink 《Biochemistry》1984,23(22):5241-5247
Physical and kinetic properties of porcine pepsin have been examined in aqueous methanol solvents at temperatures below ambient to seek evidence for covalent intermediates in the catalyzed hydrolysis of good substrates. It was first demonstrated that aqueous methanol cryosolvents have no significant deleterious effects upon this protein. The addition of methanol does lead to a drastic reduction in the midpoint of the thermal melting curve of pepsin. This could account for rate reductions previously observed in catalysis by this enzyme. This effect is lessened by the addition of active-site ligands including substrates and is fully reversible upon dilution into aqueous solution. Two substrates were chosen which have chromophoric groups on opposite sides of the scissile peptide bond. The UV spectral changes from hydrolysis of Pro-Thr-Glu-Phe-(NO2)Phe-Arg-Leu and the fluorescence spectral changes from hydrolysis of DNS-Ala-Ala-Phe-Phe-OP4P+-CH3 were studied at temperatures down to -60 degrees C. The resulting Arrhenius plots were linear in the region where pepsin exists in the native state with downward curvature exhibited at higher temperatures where the reversible denaturation occurs. No "burst" reactions were observed with either substrate. In addition, efforts at trapping intermediates by low-temperature denaturation and precipitation have provided no evidence for covalent intermediates on the reaction pathway. Although this evidence is negative, we cannot rule out the possibility of the formation of covalent intermediates following an initial rate-limiting step.  相似文献   

9.
Porcine pancreatic and Bacillus amyloliquefaciens alpha-amylases were examined for the formation of covalent carbohydrate intermediates during reaction. The enzymes were precipitated and denatured by adding 10 volumes of acetone. When these denatured enzymes were mixed with methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and chromatographed on BioGel P-2, no carbohydrate was found in the protein void volume peak. When the enzymes were added to the methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and allowed to react for 15s at 1 degrees C and then precipitated and denatured with 10 volumes of acetone, (3)H-labeled carbohydrates were found in the BioGel P-2 protein void volume peak, indicating the formation of enzyme-carbohydrate covalent intermediates. (1)H NMR analysis of the denatured enzyme from the reaction with methyl alpha-maltooligosaccharide glycosides confirmed that carbohydrate was attached to the denatured enzyme. (1)H NMR saturation-transfer analysis further showed that the carbohydrate was attached to the denatured enzyme by a beta-configuration. This configuration is what would be expected for an enzyme that catalyzes the hydrolysis of alpha-(1-->4) glycosidic linkages by a two-step, S(N)2 double-displacement reaction to give retention of the alpha-configuration of the substrates at the reducing-end of the products.  相似文献   

10.
D R Doerge 《Biochemistry》1988,27(10):3697-3700
Direct evidence is presented in support of mechanism-based (suicide) inactivation of lactoperoxidase by thiocarbamide thyroid inhibitors. The turnover of 1-methylbenzimidazolidine-2-thione was demonstrated by identifying the inhibitor-derived products 1-methylbenzimidazole and bisulfite ion that are formed concurrent to enzyme inactivation. The turnover of a hydroperoxide cosubstrate, 5-phenyl-4-pentenyl hydroperoxide, was quantitated from formation of the corresponding alcohol during enzyme inactivation. A specific inactivation pathway is suggested by the covalent binding of 1 mol of 14C- and 35S-labeled benzimidazolidine-2-thione and 1-methylbenzimidazolidine-2-thione per mole of inactivated lactoperoxidase. These results are explained by partitioning of inhibitor-derived S-oxygenated intermediates between turnover and inactivation pathways. The properties of the inactivation process are unique among thiono-sulfur compounds and suggest that benzimidazolinesulfenic acids are the reactive intermediates.  相似文献   

11.
J P Casazza  H J Fromm 《Biochemistry》1977,16(14):3091-3097
The enzyme acyl-phosphate-hexose phosphotransferase from Aerobacter aerogenes was purified to electrophoretic homogeneity. The molecular weight of the enzyme as determined on Sephadex gels is 150 000. The enzyme possesses potent phosphotransferase and phosphohydrolase activities. Initial rate kinetics were used to investigate the mechanism of acyl-phosphate-hexose phosphotransferase. These studies, which involved a number of different phosphoryl donors and substrate analogues, suggest that the kinetic mechanism is of the rapid equilibrium random Bi Bi type. A number of other enzymes that exhibit both transferase and hydrolase activities involve obligatory covalent enzyme-substrate intermediates in their mechanisms of action.  相似文献   

12.
Novel RNA polymerization reaction catalyzed by a group I ribozyme.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have converted a bacterial tRNA precursor containing a 205 nt self-splicing group I intron into a RNA enzyme that catalyzes polymerization of an external RNA substrate. The reaction involves transesterification steps analogous to both the forward and reverse exon ligation steps of group I splicing; as such it depends entirely on 3' splice site reactions. The RNA substrate is a 20 nt analogue of the ligated exons (E1.E2), whose 3' end resembles the 3' terminus of the intron RNA enzyme (IVS). The splice junction of the substrate is attacked by the 3' end of the intron, then the molecule displaces the original 3' terminal guanosine so that the new 3' terminus is brought into the active site and used as the attacking nucleophile in the next reaction. Polymerization occurs via a series of covalent enzyme-linked intermediates of the structure IVS.(E2)n, where n = 1 to > or = 18. The 5' exon accumulates during the course of the reaction and can attack the covalent intermediates to produce elongation products of structure E1.(E2)n, regenerating the intron RNA enzyme in unchanged form. In this manner, the enzyme converts 20 nt oligoribonucleotides into polyribonucleotides up to at least 180 nt by 10 nt increments. These results have significant implications for the evolution of RNA-based self-replicating systems.  相似文献   

13.
The activities of mushroom and melanoma tyrosinases towards the estrogens were compared. While the fungal enzyme is capable of hydroxylating estradiol to the 2-hydroxy compound and to oxidize the latter to the quinone, the mammalian enzyme does not have this ability. With dopa as substrate and an estrogen present in the reaction mixture, both enzyme reactions yield melanin with the steroid firmly incorporated into the pigment, although with the mammalian enzyme the incorporation is small. The steroid appears to be incorporated by covalent linkage. It is suggested that the incorporation of estrogens into melanin produced by mammalian tyrosinase is via their oxidation by oxidized intermediates of the dopa to melanin transformation. Melanin itself may function as oxidant for the estrogens. Whole melanoma cells are capable of binding estrogens and incorporating small amounts into melanosomes. Similarly, fresh melanosomes in isolation can incorporate estrogens into their structure, presumably by covalent bonding to their melanin.  相似文献   

14.
The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also be used for trapping the reaction intermediate for crystallographic studies. In this paper, the crystal structure of the acid/base catalyst mutant, E328Q, with a covalently bound glucopyranosyl moiety is presented. Sucrose cocrystallized crystals were soaked with alpha-D-glucopyranosyl fluoride, which resulted in the trapping of a covalent intermediate in the active site of the enzyme. The structure is refined to a resolution of 2.2 A and showed that binding of the covalent intermediate resulted in a backbone movement of 1 A around the location of the nucleophile, Asp286. This structure reveals the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen in amylosucrase.  相似文献   

15.
The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.  相似文献   

16.
Detergent extraction of simian virus 40 (SV40) DNA from infected monkey CV-1 cells, after a brief exposure to the drug camptothecin, yields covalent complexes between topoisomerase I and DNA that band with reduced buoyant densities in CsCl. The following lines of evidence indicate that the enzyme is preferentially associated with SV40 replicative intermediates. First, the percentage of the isolated labeled viral DNA that exhibited a reduced buoyant density is inversely proportional to the length of the labeling period and approximately parallels the percentage of replicative intermediates for each labeling time (5 to 60 min). Second, after labeling for 60 min, the isolated low-density material was found to be enriched for replicative intermediates as measured by sedimentation in neutral sucrose. Third, analysis of extracted viral DNA by equilibrium centrifugation in CsCl-propidium diiodide gradients that separate replicating molecules from completed form I DNA revealed that camptothecin pretreatment specifically caused the linkage of topoisomerase I to replicating molecules. In addition, analysis of the low-density material obtained under conditions when only the newly synthesized strands of the replicative intermediates were labeled showed that the enzyme was associated almost exclusively with the parental strands. Taken together, these observations indicate that topoisomerase I is involved in DNA replication, and they are consistent with the hypothesis that the enzyme provides swivels to allow the helix to unwind. The observed bias in the distribution of topoisomerase I on intracellular SV40 DNA could be the result of rapid encapsidation of replicated molecules that precludes the association of topoisomerase I with the DNA or, alternatively, the result of a specific association of the enzyme with replicative intermediates.  相似文献   

17.
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site to yield a 3' phosphate-terminated product. The Cys-274 mutant forms trace levels of a covalent protein-DNA complex, suggesting that the DNA cleavage reaction may proceed through a cysteinyl-phosphate intermediate. However, the His-274 and Glu-274 mutants evince no detectable accumulation of a covalent protein-DNA adduct. Glu-274 is the most active of the mutants tested. The pH dependence of the endonuclease activity of Glu-274 (optimum pH = 6.5) is distinct from that of the wild-type enzyme in hydrolysis of the covalent adduct (optimum pH = 9.5). At pH 6.5, the Glu-274 endonuclease reaction is slower by 5-6 orders of magnitude than the rate of covalent adduct formation by the wild-type topoisomerase, but is approximately 20 times faster than the rate of hydrolysis by the wild-type covalent adduct. We discuss two potential mechanisms to account for the apparent conversion of a topoisomerase into an endonuclease.  相似文献   

18.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

19.
The various forms of glutamine synthetase obtained from Bacillus brevis have been found to be antigenically identical. Alkaline phosphatase treatment of the fast moving form (GS4) reduced the electrophoretic mobility of the enzyme. Radiolabelling and autoradiographic studies have also indicated that 32P-incorporation is high in the form depicting high Rm value. Thus, it appears that these forms arise due to covalent modification of the enzyme involving a phosphate group.  相似文献   

20.
Yeast cytosine deaminase (EC 3.5.4.1) is inhibited by 5-bromo-2-pyrimidinone. In aqueous solution at neutral pH three forms of this compound (the anion, the parent, and the covalent hydrate) are in equilibrium. Experiments were undertaken in order to determine the relative contributions of these three forms to the observed inhibition. The anion makes little or no contribution. Both the parent and the covalent hydrate inhibit the enzyme, with the Ki for the hydrate being 0.2-0.02 times that of the parent. In the presence of stoichiometric concentrations of the enzyme, the equilibrium between parent and hydrate is displaced towards the hydrate; however, the hydration is not catalyzed by cytosine deaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号