首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(12):2449-2460
Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a “nanosurfer” assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human β-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0–C2 or C1–C2) on nanotubes every 14 nm. Both C0–C2 and C1–C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0–C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0–C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of β-cardiac myosin contractility.  相似文献   

2.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

3.
The current study was undertaken to investigate the relative contribution of calcium and myosin binding to thin filament activation. Using the in vitro motility assay, myosin strong binding to the thin filament was controlled by three mechanisms: 1), varying the myosin concentration of the motility surface, and adding either 2), inorganic phosphate (Pi) or 3), adenosine diphosphate (ADP) to the motility solutions. At saturating myosin conditions, Pi had no effect on thin filament motility. However, at subsaturating myosin concentrations, velocity was reduced at maximal and submaximal calcium in the presence of Pi. Adding ADP to the motility buffers reduced thin filament sliding velocity but increased the pCa(50) of the thin filament. Thus by limiting or increasing myosin strong binding (with the addition of Pi and ADP, respectively), the calcium concentration at which half maximal activation of the thin filament is achieved can be modulated. In experiments without ADP or Pi, the myosin concentration on the motility surface required to reach maximal velocity inversely correlated with the level of calcium activation. Through this approach, we demonstrate that myosin strong binding is essential for thin filament activation at both maximal and submaximal calcium levels, with the relative contribution of myosin strong binding being greatest at submaximal calcium. Furthermore, under conditions in which myosin strong binding is not rate limiting (i.e., saturating myosin conditions), our data suggest that a modulation of myosin cross-bridge kinetics is likely responsible for the graded response to calcium observed in the in vitro motility assay.  相似文献   

4.
The ability of strong-binding myosin heads to activate the thin filament was investigated by incubating skinned single muscle fibers with N-ethylmaleimide-(NEM) modified myosin subfragment-1 (S1). Isometric force was influenced in a complex manner: during maximal calcium activation, NEM-S1 inhibited force with half-maximal inhibition at 20 microM while at submaximal calcium, NEM-S1 potentiated force with greatest effect at 6 microM. When fibers were treated with NEM-S1 (4-8 microM), the tension-pCa (-log [Ca2+]) relationship became less steep (i.e. the Hill coefficient decreased from 5.4 to 3.0 upon treatment with NEM-S1), but the midpoint was unchanged. These results support the idea that strong binding of intrinsic heads contributes to the cooperativity observed in Ca2+ activation of force. The NEM-S1-induced increase in force at low Ca2+ was associated with an acceleration of a kinetic transition, and this transition was activated to near maximum while force was not. The rate of force redevelopment following restretch (ktr) at submaximal calcium was increased by NEM-S1 in a concentration-dependent manner, yielding a maximum rate at low [Ca2+] which was similar to that observed during full activation. The effects of NEM-S1 on force and ktr indicate that strong-binding myosin cross-bridges are involved in activation of the thin filament.  相似文献   

5.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

6.
In a set of experiments on regulated contractile systems (i.e., in vitro motility assay with a reconstructed thin filament), the velocity of a thin filament on the surface coated with rabbit skeletal or rat cardiac myosin was estimated at various calcium ion concentrations in solution (pCa 4–8). The velocity versus pCa curve proved to be sigmoid. The velocity of a regulated thin filament at a saturating calcium concentration (pCa 4) exceeded that of a nonregulated thin filament by 65 and 87% for skeletal and cardiac myosin, respectively. The Hill coefficient was 1.95 and 2.5 for skeletal and cardiac muscles, respectively; this difference was discussed in terms of the different contributions of cooperativity mechanisms of contractile and regulatory proteins to the regulation of contraction in these types of muscle.  相似文献   

7.
The structure of smooth muscle thin filament was examined by various electron microscopy techniques, with special attention to the mode of caldesmon binding. Chemical cross-linking was positively used to avoid the dissociation of accessory proteins upon dilution. Caldesmon in reconstituted thin filament was observed as fine filamentous projections from thin filament. Native thin filament isolated from smooth muscle showed similarly numerous fine whisker-like projections by all the techniques employed here. Antibody against the amino-terminus of caldesmon labeled the end of such projections indicating the possibility that the amino-terminal myosin binding moiety might stick out from the shaft of the thin filament. Such whiskers are often projected out as a cluster to the same side of native thin filament. Further, we could visualize the assembly of dephosphorylated heavy meromyosin (HMM) with native or reconstituted thin filament forming "nonproductive" complex in the presence of ATP. The association of HMM to the shaft of thin filament was through subfragment-2 moiety, in accordance with biochemical studies. Some HMM particles bound closer to the thin filament shaft, possibly suggesting the presence of the second myosin-binding site on caldesmon. Occasionally two kinds of HMM association as such coexisted at a single site on this filament in tandem. Thus, we constructed a structural model of thin filament. The proposed molecular arrangement is not only compatible with all the biochemical results but also provides additional support for our recent findings (E. Katayoma, G. C. Scott-Woo, and M. Ikebe (1995) J. Biol. Chem. 270, 3919-3925) regarding the capability of caldesmon to induce dephosphorylated myosin filament, which explains the existence of thick filaments in relaxed smooth muscle cells.  相似文献   

8.
We have developed a technique by which muscle thin filaments are reconstituted from the recombinant troponin components and the native thin filaments. By this technique, the reconstituted troponin complex is exchanged into the native thin filaments in the presence of 20% glycerol and 0.3 M KCl at pH 6.2. More than 90% of endogenous troponin complex was replaced with the recombinant troponin complex. Structural integrity and Ca2+ sensitivity of the reconstituted thin filament prepared by this technique was confirmed by X-ray fiber diffraction measurements and the thin filament-activated myosin subfragment 1 ATPase measurements, respectively.  相似文献   

9.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

10.
Titin is a giant molecule that spans half a sarcomere, establishing several specific bindings with both structural and contractile myofibrillar elements. It has been demonstrated that this giant protein plays a major role in striated muscle cell passive tension and contractile filament alignment. The in vitro interaction of titin with a new partner (tropomyosin) reported here is reinforced by our recent in vitro motility study using reconstituted Ca-regulated thin filaments, myosin and a native 800-kDa titin fragment. In the presence of the tropomyosin-troponin complex, the actin filament movement onto coated S1 is improved by the titin fragment. Here, we found that two purified native titin fragments of 150 and 800 kDa, covering respectively the N1-line and the N2-line/PEVK region in the I-band and known to contain actin-binding sites, directly bind tropomyosin in the absence of actin. We have also shown that binding of the 800-kDa fragment with filamentous actin inhibited the subsequent interaction of tropomyosin with actin, as judged by cosedimentation. However, this was not the case if the complex of actin and tropomyosin was formed before the addition of the 800-kDa fragment. We thus conclude that a sequential arrangement of contacts exists between parts of the titin I-band region, tropomyosin and actin in the thin filament.  相似文献   

11.
Caldesmon is a component of smooth muscle thin filaments which inhibits their interaction with myosin. We have used polarized fluorescence technique to study the behavior of caldesmon during the interaction of myosin subfragment 1 (S1) with thin filaments reconstituted in rabbit skeletal muscle ghost fibers by incorporation of smooth muscle tropomyosin and caldesmon labeled with acrylodan at cysteine residue located in the C-terminal region. Significant changes in acrylodan fluorescence intensity upon addition of skeletal muscle S1 reflected substantial displacement of caldesmon from thin filaments, while alterations in the calculated fluorescence parameters indicated the simultaneous rearrangement of the remaining caldesmon fraction. The orientation of caldesmon in the S1-thin filament complex relative to the fiber axis changes by approximately 7 degrees and the mobility of the fluorescent probe by about 9%. The alterations in caldesmon orientation were proportional to the strength of S1 binding and diminished respectively upon addition of ADP and ADP-V(i). The changes in orientation of acrylodan-caldesmon evoked by the interaction of S1 with thin filaments were more pronounced than that in AEDANS-F-actin which suggests that the spatial arrangement of caldesmon in the complex is governed not only by F-actin but also by S1. The results may indicate that the changes in spatial arrangement of caldesmon are adjusted to the conformation of F-actin and S1 characteristic for particular steps of the ATP hydrolysis cycle.  相似文献   

12.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

13.
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.  相似文献   

14.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

15.
To investigate the relationship between thin filament Ca2+ binding and activation of the MgATPase rate of myosin subfragment 1, native cardiac thin filaments were isolated and characterized. Direct measurements of 45Ca binding to the thin filament were consistent with non-cooperative binding to two high affinity sites (Ka 7.3 +/- 0.8 x 10(6) M-1) and either cooperative or non-cooperative binding to one low affinity site (Ka 4 +/- 2 x 10(5) M-1) per troponin at 25 degrees C, 30 mM ionic strength, pH 7.06. Addition of a low concentration of myosin subfragment 1 to the native thin filaments produced a Ca2+-regulated MgATPase activity with Kapp (2.5 +/- 1.3 x 10(5) M-1), matching the low affinity Ca2+ site. The MgATPase rate was cooperatively activated by Ca2+ (Hill coefficient 1.8). To determine whether Ca2+ binding to the low affinity sites was cooperative, native thin filament troponin was exchanged with troponin labeled on troponin C with 2-(4'-iodoacetamidanilo)naphthalene-6-sulfonic acid. From the Ca2+-sensitive fluorescence of this complex, Ca2+ binding was cooperative with a Hill coefficient of 1.7-2.0. Using the troponin-exchanged thin filaments, myosin subfragment 1 MgATPase rate activation was also cooperative and closely proportional to Ca2+ thin filament binding. Reconstitution of the thin filament from its components raised the Ca2+ affinity by a factor of 2 (compared with native thin filaments) and incorporation of fluorescently modified troponin raised the Ca2+ affinity by another factor of 2. Stoichiometrically reconstituted thin filaments produced non-cooperative MgATPase rate activation, contrasting with cooperative activation with native thin filaments, troponin-exchanged thin filaments and thin filaments reconstituted with a stoichiometric excess of troponin. The Ca2+-induced fluorescence transition of stoichiometrically reconstituted thin filaments was non-cooperative. These results suggest that Ca2+ binds cooperatively to the regulatory sites of the cardiac thin filament, even in the absence of myosin, and even though cardiac troponin C has only one Ca2+-specific binding site. A theoretical model for these observations is described and related to the experimental data. Well-known interactions between neighboring troponin-tropomyosin complexes are the proposed source of cooperativity and also influence the overall Ka. The data indicate that Ca2+ is four times more likely to elongate a sequence of troponin-tropomyosin units already binding Ca2+ than to bind to a site interior to a sequence of units without Ca2+.  相似文献   

16.
The regulatory protein system in the skeletal muscle thin filaments is known to exhibit three discrete states, called "off" or "blocked" (no Ca2+), "on" or "closed" (with Ca2+ alone) and "potentiated" or "open" (with strongly bound myosin head) states. Biochemical studies have shown that only weak interactions with myosin are allowed in the second state. Characterization of each state is often difficult, because the equilibria among these states are readily shifted by experimental conditions. To overcome this problem, we chemically cross-linked the skeletal muscle thin filament in the three states with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), in overstretched muscle fibers. The state of the regulatory proteins was monitored by measuring the intensity of the second actin layer-line (2nd LL) reflection in X-ray diffraction patterns. Structurally, the thin filaments cross-linked in the three states exhibited three corresponding discrete levels of 2nd LL intensities, which were not Ca2+-sensitive any more. Functionally, the thin filament cross-linked in the "off-blocked" state inhibited strong interaction with myosin head (subgfragment-1 or S1). The thin filament cross-linked in the "potentiated-open" state allowed strong interaction and full ATPase activity of S1 as described previously. The thin filament cross-linked in the "on-closed" state allowed strong interactions with S1 and actin-activated ATPase without enhancing the 2nd LL to the level of "potentiated-open" state, contrary to the expectations from the biochemical studies. The results demonstrate the potential of EDC as a tool for studying the states of calcium regulation, and the apparent uncoupling between the 2nd LL intensity and the function provides a new insight into the mechanism of thin filament regulation.  相似文献   

17.
Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber.  相似文献   

18.
Gerald S. Manning 《Biopolymers》2016,105(12):887-897
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar‐like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical‐chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress‐generating conformational changes in the myosin cross bridge, and relief of built‐up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin–myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin–myosin engagement during the weak‐to‐strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin–myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre‐power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.  相似文献   

19.
Flight muscle fibers of Anax imperator nymphs, in different developmental stages are analyzed for several morphological features, such as the arragnement and numerical ratio of actin and myosin filaments, the pattern of the T system and sarcoplasmic reticulum, the number of microtubules and the fractional volume of mitochondria in each fiber. The T system is initially represented by longitudinal grooves on the cell surface, joined with vesicles of the sarcoplasmic reticulum; this pattern rapidly changes and the grooves start to break up into longitudinal segments. The thin to thick filament ratio is at first quite high (about 4-4.5:1) but rapidly falls to the final (3:1) when the myofibrils are well developed at the fiber periphery. Statistical analyses show that the measured values are significantly different in the various stages of development, also indicating a progressive reduction of the ratio variability. The reduction of thin to thick filament ratio and the variance decrease fit quite well with the hypothesis that the synthesis of actin and myosin depends on independently regulated messenger RNA molecules.  相似文献   

20.
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号