首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations. (Chronobiology International, 18(6), 1041-1053, 2001)  相似文献   

2.
Observations on the rhythmic activity of 71 juvenile specimens of the inter-tidal blenny Zoarces viviparus reveal an endogenous pattern of swimming at three different periodicities. Circatidal swimming, with activity peaks phased to high water or the ebb of the subjective 12.4-h tides, was found in 50 fish and was the predominant pattern seen immediately after collection, when the rhythm generally persisted for between 3 and 12 cycles. Discrete activity peaks, with a free running period of approximately 24 h were also evident in the swimming pattern of eight fish. A circadian influence was also manifest as a modulation in amplitude, phase shifts and changes in free-running period of the circa-tidal rhythm. Overall, the activity level declined with time but those fish that remained active long enough showed a semi-lunar rhythm, with maximum activity at the time of the spring tides. A comparison of the behavior of animals collected at different times of the year suggests a seasonal variation in the persistence of circatidal swimming. The results are consistent with a control system involving circatidal, circadian, and semi-lunar oscillators. (Chronobiology International, 18(1), 27-46, 2001)  相似文献   

3.
Mutations at the period (per) locus (1:1.3; 3B1-2) in Drosophila melanogaster lengthen (perL), shorten (per5), or abolish (per°) overt circadian rhythmi-city. Deuterium oxide lengthens the free-running circadian period. We tested the effects of deuterium on three mutants of the per gene (per5 perL, and per°) and wild-type Drosophila melanogaster (per+) to assess interactions. With increasing concentrations of deuterium, the free-running circadian period of locomotor activity rhythms increased. The dose-response was linear in all genotypes tested. With increasing dosages ofdeuterium, circadian rhythms became weaker as evidenced by the signal-to-noise ratio (SNR). Genotype and deuterium changed circadian period length independently and additively, showing no interaction. SNRs for all genotypes converged on a low level as deuterium concentration increased. Deuterium increased life span, except at high concentrations (40 and 50%).  相似文献   

4.
In the nocturnal field mouse Mus booduga, the responsiveness of the circadian system to UV-A light of 2.5 W/m2 and 30 minutes duration is known to be phase dependent. The results of our experiments indicate that the phase shifts evoked by UV-A at the two phases, CT14 (circadian time 14) and CT20 increases nonlinearly with irradiance. (Chronobiology International, 17(6), 777–782, 2000)  相似文献   

5.
The expression of circadian clock genes was investigated in the suprachiasmatic nuclei (SCN) of young adult and old laboratory mice. Samples were taken at two time points, which corresponded to the expected maximum (circadian time 7 [CT7]) or minimum (CT21) of mPer mRNA expression. Whereas the young mice had a stable and well-synchronized circadian activity/rest cycle, the rhythms of old animals were less stable and were phase advanced. The expression of mPer1 mRNA and mPer2 mRNA was rhythmic in both groups, with peak values at CT7. The levels of mClock and mCry1 mRNA were not different depending on the time of day and did not vary with age. In contrast, an age-dependent difference was found in the case of mPer2 (but not mPer1) mRNA expression, with the maximum at CT7 significantly lower in old mice. The decreased expression of mPer2 may be relevant for the observed differences in the overt activity rhythm of aged mice. (Chronobiology International, 18(3), 559-565, 2001)  相似文献   

6.
A circadian rhythm for visual sensitivity has been intensively assessed in animals. This rhythm may be due to the existence of a circadian clock in the mammalian eye, which could account for fluctuating sensitivity to light over the day in certain species. However, very few studies have been devoted to the human visual system. The present experiment was designed to assess a possible rhythm of visual sensitivity using a psychophysical method over the whole 24h period. Twelve subjects underwent visual detection threshold measures in a protocol that allowed one point every 2h. The results show that the visual detection threshold changes over the 24h period, with high thresholds in the morning, a progressive decrease over the day and the early night, and an increase during the last part of the night. These data suggest that a circadian rhythm influences visual sensitivity to mesopic luminance in humans. (Chronobiology International, 17(6), 795-805, 2000)  相似文献   

7.
The impact of environmental and behavioral factors on the 24-h profile of blood pressure (BP) has been well established. Various attempts have been made to control these exogenous factors, in order to investigate a possible endogenous circadian variation of BP. Recently, we reported the results of the first environmentally and behaviorally controlled laboratory study with 24-h recordings of BP and heart rate (HR) during maintained wakefulness. In this constant-routine study, a pronounced endogenous circadian rhythm of HR was found, but circadian variation of BP was absent. This result suggested that the circadian rhythm of BP observed in earlier controlled studies, with sleep allowed, was evoked by the sleep-wake cycle as opposed to the endogenous circadian pacemaker. In order to verify our previous finding during maintained wakefulness, we repeated the experiment five times with six normotensive, healthy young subjects. Statistical analyses of the hourly measurements of BP and HR confirmed the replicable presence of an endogenous circadian rhythm of HR, as well as the consistent absence of an endogenous circadian variation of BP. Thus, this study provided additional evidence that the 24-h profile of BP—as observed under normal circumstances—is the sole result of environmental and behavioral factors such as the occurrence of sleep, and has no endogenous circadian component. (Chronobiology International, 18(1), 85-98, 2001)  相似文献   

8.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10-20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807-826, 2000).  相似文献   

9.
Possible circadian variations in plasma levels of arginine vasotocin (AVT) and mesotocin (MT) were assessed in domestic hens (Gallus domesticus) under a 12h:12h light-dark (LD) schedule. Blood samples were taken at 4h intervals, and neurohypophyseal hormone levels were determined by radioimmunoassay. Marked circadian changes in both AVT and MT were observed in hens provided free access to water. Minimal and maximal AVT levels occurred at 08:00 and 20:00, respectively. Minimal MT levels occurred at 20:00, whereas maximal MT levels occurred over a broad time period of 04:00 to 12:00. In water-deprived hens, plasma AVT levels were elevated at each time point, and the circadian variations in plasma AVT and MT levels were attenuated. These results demonstrate that rhythmicity in neurohypophyseal function in a lower vertebrate species, like that in mammals, is disrupted by osmotic stress. (Chronobiology International, 18(6), 947-956, 2001)  相似文献   

10.
TGR(mREN2)27 (TGR) transgenic rats develop hypertension due to the mouse mRen-2 gene inserted in their genome. At 5 weeks of age, the blood pressure of TGR rats starts rising, until a maximum is reached at 10 weeks of age. Adult TGR rats show peak values of blood pressure (BP) during the light phase, while heart rate (HR) and motor activity (MA) peak at night. In the present experiment, we evaluated the evolution of circadian rhythms in motor activity, heart rate, and blood pressure of TGR and Sprague-Dawley (SD) rats under 12h light-dark cycles (LD 12:12). Results confirmed that the blood pressure of TGR rats starts to increase at 5 weeks of age, reaching a plateau by the 11th week. Parallel to the increase in blood pressure levels, there was a decrease in the period length of the blood pressure rhythm, a delay in the onset of the alpha phase of the blood pressure rhythm with respect to that of motor activity and heart rate, and a decrease in heart rate levels. In all of the variables studied, the alpha phase of SD rats always started before darkness, whereas that of TGR rats started after lights off. In general, heart rate and motor activity levels of TGR rats were higher than those of SD rats. The amplitude of the circadian rhythms studied was greater in TGR rats than in SD rats. The present results suggest that the different evolution of circadian rhythms in TGR and SD rats might be due to differences in the functioning of the entrainment pathway or the circadian clock itself, which can be detected in young rats and that are probably caused by the expression of the mouse transgene. (Chronobiology International, 18(4), 627-640, 2001)  相似文献   

11.
Neurospora crassa (bdA) mycelia were kept in liquid culture. Without rhythmic conidiation the levels of adenine nucleotides undergo circadian changes in constant darkness. Maxima occur 12-17 hr and 33-35 hr after initiation of the rhythm, i.e., at CT 0-6 hr. Pulses of metabolic inhibitors such as vanadate (Na3Vo4), molybdate (Na2MoO4: 2 H2O), N-ethylmaleimide (NEM), azide (NaN3), cyanide (NaCN) and oligomycin phase shift the circadian conidiation rhythm of Neurospora crassa. Maximal advance phase shifts are observed at about CT 6 with all inhibitors.

Pulses of N,N'dicyclohexylcarbodiimide (DCCD) and light phase shift the conidiation rhythm following a phase response curve different from those of the other agents (maximal advance at about CT 18-24). The phase shifts with DCCD and light are significantly larger in the wild type compared to the mitochrondrial mutant poky. Such differences are not found in PRCs of the protein synthesis inhibitor cycloheximide.

[31P] NMR spectra of wild type Neurospora crassa and the clock mutants frq 1 and frq 7 which differ in their circadian period lengths did not reveal differences in the concentrations of adenine nucleotides, pyridine nucleotides or sugar phosphates. Starvation causes drastic changes of the levels of adenine nucleotides, phosphate and mobile polyphosphate without effecting phase or period length of the circadian rhythm.  相似文献   

12.
The variation in spontaneous meal patterning was studied in three genotypes (tau +/+, tau +/-and tau -/-) of the Syrian hamster with an altered circadian period. Feeding activity was monitored continuously in 13 individuals from each genotype in constant dim light conditions. All three genotypes had on average six feeding episodes during the circadian cycle (about 20h in homozygous tau mutants and 22h in heterozygotes compared with 24h in wild-type hamsters). Thus, homozygous tau mutant hamsters had significantly more feeding episodes per 24h than wild types, and heterozygotes were intermediate. The average duration of feeding bouts (FBs) was indistinguishable (around 30 minutes) among the three genotypes, whereas the intermeal (IM) intervals were significantly shorter for homozygote tau mutant hamsters (99 minutes), intermediate for heterozygotes (116 minutes), and the longest for wild-type hamsters (148 minutes). Thus, the meal-to-meal duration was on average 25% shorter in homozygous tau mutants (16% in heterozygous) than in wild-type hamsters. The reduction of the circadian period has a pronounced effect on short-term feeding rhythms and meal frequency in hamsters carrying the tau mutation. (Chronobiology International, 18(4), 657-664, 2001)  相似文献   

13.
The gymnotid electric fish, Eigenmannia virescens, exhibits electric discharge rhythmicity both in alternate light-dark (LD; 12h light, 12h dark [LD 12:12]) and in constant dark (DD) conditions. It suggests that the electric discharge rhythm is under control of the circadian clock. The free-running periods (FRPs) of electric discharge rhythms at 21°C in DD are greater than, but close to, 24h. The maximum of the electric discharge in the Eigenmannia system peaks approximately at circadian time 6 (CT6) in the middle of the subjective day. The circadian oscillator in the system is temperature compensated. This original report reveals the relationship between electric discharge activity and the circadian pacemaker in Eigenmannia and provides an alternative system to investigate circadian rhythms in vertebrates. (Chronobiology International, 17(1), 43-48, 2000)  相似文献   

14.
RETINAL CIRCADIAN RHYTHMS IN HUMANS *   总被引:6,自引:0,他引:6  
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19-40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957-971, 2001)  相似文献   

15.
Serious adverse cardiovascular events, including myocardial infarction, sudden cardiac death, and stroke, frequently result from rupture of atherosclerotic plaques with superimposed thrombosis and exhibit a pronounced circadian rhythmicity, peaking in the morning hours. Two potentially synergistic mechanisms play a pathogenic role in the circadian variation of arterial thrombotic events. A morning surge in sympathetic activity alters hemodynamic forces and predisposes vulnerable coronary atherosclerotic plaques to rupture. Day-night variations of hemostatic and fibrinolytic factors result in morning hypercoagulability and hypofibrinolysis, promoting intraluminal thrombus formation at the same time when the risk for plaque rupture is highest. Diabetic patients have a very high cardiac event rate but fail to show normal circadian fluctuations in the occurrence of myocardial infarction. Alterations in the circadian variation autonomic tone, blood pressure, and the thrombotic-thrombolytic equilibrium have been documented in diabetic patients. These include reduced or absent 24-h periodicity in autonomic tone, fibrinolytic activity, and thrombotic tendency, and a blunted decline in nocturnal blood pressure. Disruption of these circadian rhythms explains the lack of significant circadian distribution of cardiac events in diabetic patients. Moreover, the loss of these normal biorhythms results in a continuous susceptibility to thrombotic events throughout the day and may contribute to the excess cardiovascular mortality and morbidity in these patients. (Chronobiology International, 18(1), 109-121, 2001)  相似文献   

16.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683-696, 2001)  相似文献   

17.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

18.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921-932, 2001)  相似文献   

19.
(1) The isolated mixtures of ribosomal proteins can be substituted by [14C]-iodoacetamide up to an average of about 2 equivalents per 20 000 dalton. The extent of substitution of single proteins measured after two-dimensional polyacrylamide gel electrophoresis shows that all proteins are reactive.

(2) Also in the subunits, all proteins are accessible to substitution. Compared with isolated proteins, however, the reactivity is decreased and the amount of labelling for most proteins ranges as low as 5 to 20%.

(3) Reassociation of ribosomal subunits decreases the reactivity of 12 proteins of the small subunit and that of 20 proteins of the large subunit.

(4) The presence of messenger inhibits the substitution of 10 proteins of the small subunit and of 6 proteins of the large one.

(5) Seven proteins of the small subunit and 3 proteins of the large one are influenced both by the other subunit and by messenger-RNA.  相似文献   


20.
The eclosion rhythm of a laboratory population of Drosophila melanogaster was studied under 12h light, 12h dark (LD 12:12) cycles. Although most of the flies were found to eclose just after “lights on” in LD 12:12, termed within gate (WG) flies, a few flies were found to eclose nearly 10h after peak eclosion, termed outside gate (OG) flies. The circadian parameters of the clocks controlling oviposition rhythms in the WG and the OG flies were estimated to understand the cause of such differences in the timing of eclosion. The distribution of the fraction of individual flies exhibiting single, multiple, and no significant period in the WG flies was significantly different from distribution in the OG flies. Compared to the WG flies, more OG flies were found to exhibit oviposition rhythm with multiple periodicity, whereas more WG flies exhibited an oviposition rhythm with a single significant period. The fraction of flies with arrhythmic oviposition was similar in both the WG and the OG flies. Free-running period τ in constant darkness (DD) and the phase angle difference ψ in LD 12:12 for the oviposition rhythm of WG and OG flies were significantly different. These results suggest that the differences in the time of eclosion between the flies eclosing within the gate and outside the gate of eclosion are probably due to differences in the circadian system controlling eclosion, which is reflected by the differences in their oviposition rhythm. (Chronobiology International, 18(4), 601-612, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号