首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appreciation of the diversity of caecilian amphibians has recently been enhanced by the discovery of a radically divergent aquatic caecilian of the Neotropical Typhlonectidae. Atretochoana eiselti is the largest lungless tetrapod and the only lungless caecilian, and it possesses a suite of remarkable cranial modifications that set it apart from all other caecilians. Numerical phylogenetic analyses, using 141 morphological characters, were performed in order to resolve the evolutionary relationships of Atretochoana and representatives of all other typhlonectid genera. These analyses yield a single most parsimonious tree, (Chthonerpeton (Nectocaecilia (Typhlonectes natans, Typhlonectes compressicauda) (Potomotyphlus, Atretochoana)))) , that is both well resolved and, as judged by Bremer support and by bootstrapping, is well supported. This tree is used as a basis for interpreting ecological shifts and associated morphological evolution within the Typhlonectidae. The available data suggest that the rate of morphological evolution in the Atretochoana lineage is significandy greater than that in other typhlonectid lineages.  相似文献   

2.
Insights into morphological diversification can be obtained from the ways the species of a clade occupy morphospace. Projecting a phylogeny into morphospace provides estimates of evolutionary trajectories as lineages diversified information that can be used to infer the dynamics of evolutionary processes that produced patterns of morphospace occupation. We present here a large-scale investigation into evolution of morphological variation in the skull of caecilian amphibians, a major clade of vertebrates. Because caecilians are limbless, predominantly fossorial animals, diversification of their skull has occurred within a framework imposed by the functional demands of head-first burrowing. We examined cranial shape in 141 species, over half of known species, using X-ray computed tomography and geometric morphometrics. Mapping an existing phylogeny into the cranial morphospace to estimate the history of morphological change (phylomorphospace), we find a striking pattern: most species occupy distinct clusters in cranial morphospace that closely correspond to the main caecilian clades, and each cluster is separated by unoccupied morphospace. The empty spaces in shape space are unlikely to be caused entirely by extinction or incomplete sampling. The main caecilian clades have different amounts of morphological disparity, but neither clade age nor number of species account for this variation. Cranial shape variation is clearly linked to phyletic divergence, but there is also homoplasy, which is attributed to extrinsic factors associated with head-first digging: features of caecilian crania that have been previously argued to correlate with differential microhabitat use and burrowing ability, such as subterminal and terminal mouths, degree of temporal fenestration (stegokrotaphy/zygokrotaphy), and eyes covered by bone, have evolved and many combinations occur in modern species. We find evidence of morphological convergence in cranial shape, among species that have eyes covered by bone, resulting in a narrow bullet-shaped head. These results reveal a complex history, including early expansion of morphospace and both divergent and convergent evolution resulting in the diversity we observe today.  相似文献   

3.
The scant fossil record of caecilians has obscured the origin and evolution of this lissamphibian group. Eocaecilia micropodia from the Lower Jurassic of North America remains the only stem-group caecilian with an almost complete skull preserved. However, this taxon has been controversial, engendering re-evaluation of traits considered to be plesiomorphic for extant caecilians. Both the validity of the placement of E. micropodia as a stem caecilian and estimates of the plesiomorphic condition of extant caecilians have been questioned. In order to address these issues, the braincase of E. micropodia was examined via micro-computed tomography. The braincase is considered to be a more reliable phylogenetic indicator than peripheral regions of the skull. These data reveal significant new information, including the possession of an ossified nasal septum, ossified anterior wall of the sphenethmoid, long anterolateral processes on the sphenethmoid, and paired olfactory nerve foramina, which are known only to occur in extant caecilians; the latter are possibly related to the evolution of the tentacle, a caecilian autapomorphy. A phylogenetic analysis that included 64 non-amniote taxa and 308 characters represents the first extensive test of the phylogenetic affinities of E. micropodia. The results place E. micropodia securely on the stem of extant caecilians, representing a clade within Temnospondyli that is the sister taxon to batrachians plus Gerobatrachus. Ancestral character state reconstruction confirms the braincase of E. micropodia to be largely representative of the plesiomorphic condition of extant caecilians. Additionally, the results refine the context within which the evolution of the caecilian form can be evaluated. The robust construction and pattern of the dermal skull of E. micropodia is interpreted as symplesiomorphic with advanced dissorophoid temnospondyls, rather than being autapomorphic in its robust construction. Together these data increase confidence in incorporating E. micropodia into discussions of caecilian evolution.  相似文献   

4.
5.
Atretochoana eiselti is the largest extant lungless tetrapod. This species is one of the fully aquatic caecilian amphibians of the family Typhlonectidae. It is unique within Gymnophiona in lacking lungs and having sealed choanae, a snake‐like postoccipital jaw articulation, and some other greatly divergent features. Phylogenetic relationships of the five typhlonectid genera have been estimated only once previously, in an analysis of morphological data. Here we infer for the first time integrating molecular and morphological data, the relationships of all typhlonectid genera. Although Atretochoana and Potomotyphlus share several derived character states in morphology, some of which linked to a reduction of the pulmonary importance in respiration, Potomotyphlus is more closely related to Typhlonectes than to Atretochoana. Consequently, we conclude that evolutionary loss of lungs or gradual reduction of their importance in respiration in Atretochoana and Potomotyphlus was convergent within this poorly known group of amphibians.  相似文献   

6.
All extant orders of amphibians are characterized by kinetic skulls. Main type of intracranial movability in amphibians is pleurokinetism, that is supplemented in different amphibian groups by various types of rhyncho- and prokinetism. The most primitive pattern of cranial kinesis is revealed in the stegocrotaphic gymnophions. More paedomorphic species retain general cranial flexibility that is characteristic of larval skull. That is unfavourable for evolution of well-regulated (adult) cranial kinesis and related feeding adaptations. Kinetism is also reduced in the species with heavily ossified skulls. Adaptive role and evolution of cranial kinesis in amphibians are discussed.  相似文献   

7.
Focal Review: The Origin(s) of Modern Amphibians   总被引:1,自引:1,他引:0  
  相似文献   

8.
The levels of integration, patterns of allometric growth and size-related differences in skull dimensions of the caecilian Dermophis mexicanus were investigated by means of univariate, bivariate and multivariate statistics. The analyses indicate that (1) most but not all measurements of the skull arc more variable in adults than in juveniles; (2) growth is allometric and results in changes in shape between juveniles and adults; (3) there is a high level of integration of all variables by general size; and (4) homologous paired measurements show concordant allometric trends and are integrated beyond the sole effect of general size. These analyses provide baseline data, a set of hypotheses and a methodological framework for comparative studies of patterns of variation and integration among caecilians and among other vertebrates.  相似文献   

9.
The caecilians, members of the amphibian Order Gymnophiona, are the least known Order of tetrapods, and their intra-relationships, especially within its largest group, the Family Caeciliidae (57% of all caecilian species), remain controversial. We sequenced thirteen complete caecilian mitochondrial genomes, including twelve species of caeciliids, using a universal primer set strategy. These new sequences, together with eight published caecilian mitochondrial genomes, were analyzed by maximum parsimony, partitioned maximum-likelihood and partitioned Bayesian approaches at both nucleotide and amino acid levels, to study the intra-relationships of caecilians. An additional multiple gene dataset including most of the caecilian nucleotide sequences currently available in GenBank produced phylogenetic results that are fully compatible with those based on the mitogenomic data. Our phylogenetic results are summarized as follow. The caecilian family Rhinatrematidae is the sister taxon to all other caecilians. Beyond Rhinatrematidae, a clade comprising the Ichthyophlidae and Uraeotyphlidae is separated from a clade containing all remaining caecilians (Scolecomorphidae, Typhlonectidae and Caeciliidae). Within this large clade, Scolecomorphidae is the sister taxon of Typhlonectidae and Caeciliidae but this placement did not receive strong support in all analyses. Caeciliidae is paraphyletic with regard to Typhlonectidae, and can be divided into three well-supported groups: Caeciliidae group 1 contains the African caeciliids Boulengerula and Herpele; Caeciliidae group 2 contains Caecilia and Oscaecilia and it is the sister taxon of Typhlonectidae; Caeciliidae group 3 comprises the remaining species of caeciliids. The mitochondrial genome data were also used to calculate divergence times for caecilian evolution using the penalized likelihood method implemented in the program R8S. The newly obtained dating results are compatible with (but a little older than) previous time estimates mainly based on nuclear gene data. The mitogenomic time tree of caecilians suggests that the initial diversification of extant caecilians most probably took place in Late Triassic about 228 (195–260) Ma. Caeciliids currently distributed in India and the Seychelles diverged from their African and American relatives most probably in Late Jurassic about 138 (112–165) Ma, fairly close to the time (130 Ma) when Madagascar–India–Seychelles separated from Africa and South America. The split between the Indian caeciliid Gegeneophis and Seychellean caeciliids occurred about 103 (78–125) Ma, predated the rifting of India and the Seychelles (65 Ma).  相似文献   

10.
The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India-an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians.  相似文献   

11.
Of living amphibian groups, the limbless burrowing caecilians are amongst the most highly specialised, but are the least known. Their fossil record is extremely poor, leaving unresolved questions as to their origins, relationships and early distribution. We describe here caecilian remains from a Lower Cretaceous (Berriasian) microfossil locality near Anoual, Morocco. This material represents the second oldest record for the group, after the Jurassic Eocaecilia of North America, and the earliest caecilian record for Gondwana. It forms the basis of a new genus, Rubricacaecilia , which appears slightly more derived than Eocaecilia , but lacks major features of crown-group taxa. We support the use of Apoda Oppel, 1811 for the crown-group alone, and Gymnophiona Rafinesque 1814 for the clade comprising stem-group taxa + Apoda.  相似文献   

12.
Viviparity is reported for Gegeneophis seshachari (Gymnophiona: Caeciliidae) from a gravid female containing four oviductal foetuses. The oviducts are highly vascularized and contain patches of thickened, layered tissue similar to foetal gut contents. Gegeneophis seshachari probably resemble other viviparous caecilians in having foetuses that ingest thickened oviduct lining using specialized deciduous teeth. This is the first report of viviparity in Asian amphibians and Indo-Seychellean caeciliids. Gegeneophis is the only caecilian genus known to include oviparous and viviparous species, and G. seshachari is the smallest known viviparous caecilian. Phylogenetic analysis of mitochondrial DNA sequences supports assignment of G. seshachari to a monophyletic Gegeneophis. Character optimization indicates that viviparity has evolved independently at least four times within Gymnophiona--a rate of incidence relative to the number of extant species that is higher than for other vertebrate groups except squamate reptiles. Our findings strengthen the proposal that caecilian reproduction demands further attention.  相似文献   

13.
Various methods of investigation of cranial kinesis are compared. The biomechanical model of the amphikinetic cranial mechanism of lizards developed by Frazzetta (1962) corresponds to the skulls of species with the dependent streptostyly. A new modification of this model is proposed for species with the independent streptostyly, which conforms to the results of experimental investigations of cranial kinesis in living lizards. The lacertilian amphikinesis has developed on the basis of the pleurokinesis inherited from fish ancestors of tetrapods. Movable connections of the maxillo-buccal segments with the axial skull persisted in the amphikinetic skull and were completed by the transversal flexible connections in the dermatocranial roof and loose connections of dermatocranium with the braincase. The development of new movable intracranial connections could have been preceded by transformations in the jaw musculature (formation of the pterygoideus muscle and inclined position of the external jaw adductor), which caused longitudinal jaw movements. Development of new movable connections within the skull was triggered by paedomorphosis processes. In various lacertilian groups, the cranial kinesis was improved by the development of various forms of streptostyly and flexipalatality.  相似文献   

14.
Caecilians are legless amphibians quite characteristic of the Western Ghats. Fourteen out of 16 Indian species occur in the Western Ghats and all are endemic. The present paper deals with the biology of caecilians with reference to external morphology and general breeding behaviour. It consolidates information on 26 morphological parameters which are used in caecilian identification. Metric multidimensional scaling of 16 species of caecilians using pair-wise euclidian distances calculated on the basis of 11 important morphometric parameters clearly depicts morphological distances between different species and more so the genera, thereby validating the classification. A field guide has been developed for the identification of caecilians based on a survey made all over the Western Ghats, observation of holotypes at the Natural History Museum, London and review of the literature. The study also reveals the microhabitat requirements of the caecilians. Further, the localities of caecilian distribution in the Western Ghats are mapped. The taxonomy of Indian caecilians is discussed.  相似文献   

15.
Tectal development in a number of caecilian (Gymnophiona: Amphibia) species was examined and compared with that in frogs and salamanders. The caecilian optic tectum develops along the same rostrocaudal and lateromedial gradients as those of frogs and salamanders. However, differences exist in the time course of development. Our data suggest that, as in salamanders, simplification of morphological complexity in caecilians is due to a retardation or loss of late developmental stages. Differences in the time course of development (heterochrony) among different caecilian species are correlated with phylogenetic history as well as with variation in life histories. The most pronounced differences in development occur between the directly developing Hypogeophis rostratus and all other species examined. In this species, the increase in the degree of morphological complexity is greatly accelerated. J. Morphol. 236:233–246, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Sexual dimorphism, widespread in the animal kingdom, describes differences between the sexes in size, shape and many other traits. Sexual size dimorphism (SSD) plays a significant role in understanding life history evolution and mating systems. The snakelike morphology of limbless caecilian amphibians lacking obvious secondary sexual characters (in contrast to frogs and salamanders) impedes accurate intrasexual comparisons. In this study, sexual size dimorphism in the oviparous caecilian Ichthyophis cf. kohtaoensis, a phylogenetically basal caecilian, was analysed. Females were larger in all body and head characters tested. However, when adjusted to body size (total length), females differed only in their cloacal shape. Clutch volume was positively correlated to female body size, thus female fecundity increased with body size supporting the hypothesis of a fecundity-selected SSD in the oviparous Ichthyophis cf. kohtaoensis. A review of the present SSD data for caecilians shows that many species are monomorphic for body size but show dimorphism in head size, while other species demonstrate female-biased SSD. Male-biased SSD has not been reported for caecilians. To understand life history evolution in caecilians, further studies on the reproductive biology of other taxa are urgently needed, in particular for rhinatrematids and uraeotyphlids. New data will allow phylogenetically controlled comparative analyses to fully explore the pattern of SSD among caecilian lineages.  相似文献   

17.
18.
We compared locomotion of two species of caecilian using x-ray videography of the animals traversing smooth-sided channels and a pegboard. Two channel widths were used, a body width channel and a body width + 20% channel. The terrestrial caecilian, Dermophis mexicanus , used internal concertina locomotion in both channels and lateral undulation on the pegboard. The aquatic caecilian, Typhlonectes natans , was not able to move at all in the body width channel. In the wider channel Typhlonectes proceeded at the same speed as Dermophis while using normal, rather than internal, concertina locomotion. On the pegboard, Typhlonectes used lateral undulation and achieved 2.5 times the speed managed by Dermophis. A phylogenetic analysis of this, and other, evidence shows that (1) internal concertina evolved in the ancestor to extant caecilians and (2) internal concertina locomotion was secondarily lost in the aquatic caecilians.  相似文献   

19.
20.
India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号