首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Drosophila melanogaster ovo locus codes for several tissue- and stage-specific proteins that all possess a common C-terminal array of four C2H2 zinc fingers. Three fingers conform to the motif framework and are evolutionarily conserved; the fourth diverges considerably. The ovo genetic function affects germ cell viability, sex identity and oogenesis, while the overlapping svb function is a key selector for epidermal structures under the control of wnt and EGF receptor signaling. We isolated synthetic DNA oligomers bound by the OVO zinc finger array from a high complexity starting population and derived a statistically significant 9 bp long DNA consensus sequence, which is nearly identical to a consensus derived from several Drosophila genes known or suspected of being regulated by the ovo function in vivo. The DNA consensus recognized by Drosophila OVO protein is atypical for zinc finger proteins in that it does not conform to many of the ‘rules’ for the interaction of amino acid contact residues and DNA bases. Additionally, our results suggest that only three of the OVO zinc fingers contribute to DNA-binding specificity.  相似文献   

2.
3.
4.
5.
End effects in DNA recognition by zinc finger arrays.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

6.
7.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

8.
The connection of functional modules is effective for the design of DNA binding molecules with the desired sequence specificity. C(2)H(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules and are expected to recognize any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc fingers. To investigate the effects of the replacement of the terminal finger on the DNA recognition by other fingers, we have constructed the three zinc finger peptides with finger substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is predicted if the fingers act in a modular fashion. The methylation interference analyses demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger (active finger) induces a conformational change in the DNA in the region for the binding of the N-terminal finger (passive finger). The present results strongly suggest that the extent of base recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This information provides an important clue for the creation of a zinc finger peptide with the desired specificity, which is applicable to the design of novel drugs and biological tools.  相似文献   

9.
10.
11.
12.
Hypaphorine, an indolic alkaloid from an ectomycorrhizal fungus is a putative antagonist of indole-3-acetic acid (IAA) known to inhibit the effect of IAA in growing roots of Eucalyptus seedling. Previously we have used horseradish peroxidase-C (HRP) as a sensitive reporter of IAA-binding to the IAA-binding domain, and reported that hypaphorine specifically inhibits the HRP-catalyzed superoxide generation coupled to oxidation of IAA [Kawano et al., Biochem. Biophys. Res. Commun. 288]. Since binding of IAA to the auxin-binding domain is the key step required for IAA oxidation by HRP, it was assumed that the inhibitory effect of hypaphorine is due to its competitive binding to the auxin-binding domain in HRP. Here, we obtained further evidence in support of our assumption that hypaphorine specifically inhibits binding of IAA to HRP. In this study, HRP arrested at the temporal inactive form known as Compound III was used as a sensitive indicator for binding of IAA to HRP. Addition of IAA to the preformed Compound III resulted in rapid decreases in absorption maxima at 415, 545, and 578 nm characteristic to Compound III, and in turn a rapid increase in absorption maximum at 670 nm representing the formation of P-670, the irreversibly inactivated form of hemoproteins, was induced. In contrast, the IAA-dependent irreversible inactivation of HRP was inhibited in the presence of hypaphorine. In addition, the mode of interaction between IAA and hypaphorine was determined to be competitive inhibition, further confirming that hypaphorine is an IAA antagonist which specifically compete with IAA in binding to the IAA-binding site in plant peroxidases.  相似文献   

13.
Neural zinc finger factor 1 (NZF-1) is a nonclassical zinc finger protein involved in neuronal development. NZF-1 contains multiple copies of a unique CCHHC zinc-binding domain that recognize a promoter element in the β-retinoic acid receptor gene termed β-retinoic acid receptor element (β-RARE). Previous studies have established that a two-domain fragment of NZF-1 bound with zinc is sufficient for specific DNA binding. Proper functioning of the nervous system relies heavily on iron and misregulation of this highly redox active metal has serious consequences. Several classes of zinc finger proteins have been shown to bind other metal ions, including iron. To determine if ferrous iron can coordinate to the metal-binding sites of NZF-1 and assess the functional consequences of such coordination, a fragment of NZF-1 that contains two zinc-binding domains, NZF-1 double finger (NZF-1-DF), was prepared. UV–vis spectroscopy experiments demonstrated that Fe(II) is capable of binding to NZF-1-DF. Upon reconstitution with either Fe(II) or Zn(II), NZF-1-DF binds selectively and tightly (nanomolar affinity) to its target β-RARE DNA sequence, whereas apo-NZF-1-DF does not bind to DNA and instead aggregates.  相似文献   

14.
Zinc fingers, 30-residue peptides anchored on Zn(II) coordinated to pairs of cysteines and histidines, recognize DNA triplets and, as tandem modules, effect sequence read out. The focus of zinc finger-DNA interaction studies thus far has been to probe the nature of the binding of the 12-residue recognition element of the finger with DNA code bases. To understand the possible role of the Zn(II) ligand and to assess its own DNA interaction profile, [(CH)2Zn] (C: cysteine; H: histidine; Figure 1) was constructed from bis-t Boc-cystinyl-di-His-OMe via thiol-disulfide exchange, Zn(II) complexation, and deprotection. [(CH)2Zn] binds with polyd- (G·C)·polyd(G·C) with association constants—1.8 × 107 M−1 (specific DNA-phosphate) and 3.3 × 103 M−1 (nonspecific DNA-phosphate); perturbs its B-DNA profile; and enhances the Tm from 62.5 to 70.15°C in a concentration-independent manner, with an ideal reversal profile on cooling, not observed in the DNA alone; releases polyd(G·C)·polyd(G·C)-bound ethidium bromide; enhances the fluorescence of polyd(G·C)·polyd(G·C)-bound ethidium bromide at low concentrations; and quenches it at higher ranges. [(CH)2Zn] also binds to d(ACGCTGGGCGT), the sequence associated with Zif-268, 3-finger binding site. Such interactions were not seen in parallel studies with (a) polyd(A·T)·polyd(A·T) and [(CH)2Zn] and (b) {[C′H2] (C′: cystine; H: histidine; the direct metal-free precursor of [(CH)2Zn]}, ionic zinc nitrate, and covalent zinc acetyl acetonate Zn(AcAc)2, with poly[d(G·C)·polyd(G·C)]. The results are rationalized on the basis of two types of association between [(CH)2Zn] and polyd(G·C)·polyd(G·C), a nonspecific recognition of the sugar phosphate backbone, by an imidazole of [(CH)2Zn] and a specific one involving the amino group of [(CH)2Zn] and the guanine base of DNA. Control experiments show that the latter greatly promotes DNA recognition. The possibility for such specific interactions with relatively small structures of the type [(CH)2Zn] would be of use in the design of DNA recognition elements and also provide an explanation for the experimentally found variation in the placement of the zinc finger docking unit around the major groove of DNA. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
The DNA binding and structural properties of Xfin-31 (Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. and Wright, P.E., 1989, Science 245, 635-637), a twenty five amino acid zinc finger peptide, in the reduced, oxidized and zinc complex forms, as well as the fourteen residue helical segment of the zinc finger (residues 12-25) have been compared using affinity coelectrophoresis (ACE) and circular dichroism (CD) spectroscopy. The zinc complex and oxidized peptides bind cooperatively to DNA although the cooperativity factor, omega, is more than 15-fold greater for the zinc complex. The reduced peptide in the absence of zinc and the helical segment do not bind cooperatively (omega = 1). Hence, the binding constant for singly contiguous sites (K omega) ranges over 100-fold for the various peptides even though the intrinsic binding constants (K) are similar. An increase in binding order and affinity for the other forms of Xfin-31 is correlated with an increasing similarity of the CD spectrum to that of the Xfin-31 zinc complex. The surprising DNA binding activity of the oxidized peptide may result from hydrophobic interactions between the amino-terminal loop formed by the Cys3-Cys6 disulfide bond and conserved hydrophobic residues in the carboxyl-terminal segment. Xfin-31 may be a particularly useful model for studying several poorly understood aspects of cooperative, non-specific DNA binding since it is small, has a stable, well-defined structure, and structures of zinc fingers bound to DNA have been determined.  相似文献   

16.
PARP-like zinc fingers (zf-PARPs) are protein domains apt to the recognition of multiple DNA secondary structures. They were initially described as the DNA-binding, nick-sensor domains of poly(ADP-ribose)polymerases (PARPs). It now appears that zf-PARPs are evolutionary conserved in the eukaryotic lineage and associated with various enzymes implicated in nucleic acid transactions. In the present study, we discuss the functional and structural data of zf-PARPSs in the light of a comparative analysis of the protein family. Sequence and structural analyses allow the definition of the conserved features of the zf-PARP domain and the identification of five distinct phylogenetic groups. Differences among the groups accumulate on the putative DNA binding surface of the PARP zinc-finger fold. These observations suggest that different zf-PARP types have distinctive recognition properties for DNA secondary structures. A comparison of various functional studies confirms that the different finger types can accomplish a selective recognition of DNA structures.  相似文献   

17.
Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions -1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure-function relationships of the existing zinc finger-DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.  相似文献   

18.
19.
DNA binding properties of the vitamin D3 receptor zinc finger region.   总被引:8,自引:0,他引:8  
The DNA binding domains of the nuclear receptor superfamily are highly conserved and consist of residues that fold into two zinc finger-like motifs, suggesting that the structures of this region among the members of the superfamily are likely to be very similar. Furthermore, the response elements that these receptors bind to are similar in sequence and organization. Nevertheless, these receptors selectively recognize target response elements and differentially regulate linked genes. In order to study the details of receptor:DNA binding, we have overexpressed and purified the vitamin D3 receptor DNA binding domain (VDRF) and have begun characterizing its DNA binding properties. We find that the VDRF protein binds strongly and specifically to direct repeats constituting a vitamin D response element from the mouse osteopontin (Spp-1) promoter region but weakly to the human osteocalcin vitamin D response element. Unlike receptors that recognize hormone response elements oriented as inverted repeats, such as the glucocorticoid receptor (GR) and estrogen receptor, VDRF appears to bind half-sites noncooperatively, without the free energy contribution of dimerization seen when the glucocorticoid receptor DNA binding domain associates with a glucocorticoid response element. By comparing and contrasting the DNA binding properties of the vitamin D and glucocorticoid receptors, we suggest a model for how receptors that prefer direct repeats differ in their binding strategy from those that recognize inverted repeats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号