首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of rye (Secale cereale) root border cells (RBCs), generated during plant growth and surrounding the root cap, with nonpathogenic rhizosphere Fusarium culmorum isolates: DEMFc2 (PGPF) and DEMFc5 (DRMO), and a pathogenic strain DEMFc37 were studied in test tube experiments. The effect of water-suspended RBCs released from the rye root cap on the rate of macroconidia germination and hyphae (mycelial) growth of F. culmorum strains was also examined. It was found that root caps of 3-d-old rye seedlings (with the root length of 20 mm) were surrounded with a layer of RBCs generated in a number specific for this plant species of 1980 ± 30. Introduction of the macroconidia of the tested F. culmorum strains into the root zone of 3-d-old seedlings resulted, after 3 d of incubation, in the formation of mantle-like structures only in the rhizosphere of plants inoculated with the pathogenic DEMFc37 strain. The macroconidia were suspended in (1) water, (2) a water mixture with root caps deprived of RBCs, (3) Martin medium, (4) malt extract broth, and (5) a water mixture with rye RBCs, and their percentage germination was determined during 96-h incubation at 20 °C. Germination of the macroconidia of all the tested F. culmorum strains suspended in the rich growth media (Martin and malt extract broth) and in the mixture with RBCs was significantly speeded up. While only an average of 16.6 % of macroconidia suspended in water germinated after 96-h incubation, more than 90 % of those suspended in the growth media or in the mixture with RBCs germinated after 24 h of incubation. In all the treatments, the highest rate of macroconidia germination was found in suspensions of the pathogenic strain and the lowest in macroconidial suspensions of the PGPF strain. The stimulatory effect of RBCs was not specific to the pathogenic strain. Nevertheless, microscopic observation revealed that it was only in the suspension containing a mixture of rye RBCs and macroconidia of the pathogenic strain that after 48-h incubation compact clusters of hyphae and RBCs, resembling mantle-like structures found in the root zone of plants inoculated only with the pathogenic strain but not inoculated with DRMO and PGPF strain, were formed.  相似文献   

2.
Clonostachys rosea (CR) is a common worldwide saprophyte with destructive effect against several plant pathogenic fungi showing antagonistic features against a wide variety of pathogens. We recently isolated a strain of C. rosea, named CR47, from wheat crown infected with Fusarium culmorum (FC); this strain proved to be effective against Fusarium seed borne diseases of cereals under field condition. In this paper the function of C. rosea applied as seed treatment on wheat seedling growth was investigated. In addition, we investigated the expression pattern of peroxidases and chitinases as well as PR4 proteins following both CR treatments of seeds and FC infection and also in the three-component system pathogen–antagonist–wheat. Several chitinase isoforms were induced by CR-treatment both in coleoptiles and roots, whereas some peroxidase isoforms were induced only in the presence of both antagonist and pathogen. In the latter case, it seems that CR-treatment by itself promotes plant growth and reduces the peroxidase expression, while enhances some chitinase isoforms probably involved in cell wall disruption. Moreover, both the antagonist and the pathogen studied induced PR4 protein expression, which probably exerts its role on the invading microorganisms by a translation-inhibitory process that could be ascribed to their ribonuclease activity.  相似文献   

3.
枯萎病是顽固性土传病害,称为瓜菜中的“癌症”,已成为制约我国瓜菜产业可持续健康发展的瓶颈问题。本文简要介绍瓜菜枯萎病危害,并从细胞壁降解酶、毒素、信号传导和致病基因等方面综述瓜菜枯萎病灾变机制,然后从根际微生物组自身与病原菌、土壤层面和植物层面等重点阐述了根际微生物组防治和抵御瓜菜枯萎病的机理,最后对枯萎病发生和抑制关键因子挖掘、核心微生物组构建及根际微生物组分子机制等进行了展望,期望生防微生物防治病害发生进入一个崭新且高效的阶段,为加快提升作物抗逆性机理研究提供一定思路。  相似文献   

4.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

5.
Fusarium verticillioides and other Fusarium species were examined for their spore germination phenotypes. In general, germinating spores of F. verticillioides formed germ tubes that immediately penetrated into agar. Such invasive germination was the predominant growth phenotype among 22 examined field isolates of F. verticillioides from a broad range hosts and locations. However, two of the field isolates were unique in that they formed conidial germ tubes and hyphae that grew along the surface of agar before penetration eventually occurred. Conidia of 22 other Fusarium species were assessed for their germination phenotypes, and only some strains of F. annulatum, F. fujikuroi, F. globosum, F. nygamai, and F. pseudoanthophilum had the surface germination phenotype (21 % of the strains assessed). Sexual crosses and segregation analyses involving one of the F. verticillioides surface germination strains, NRRL 25059, indicated a single locus, designated SIG1 (surface vs. invasive germination), controlled the germ tube growth phenotypes exhibited by both conidia and ascospores. Perfect correlation was observed between an ascospore germination phenotype and the germination phenotype of the conidia produced from the resulting ascospore-derived colony. Recombination data suggested SIG1 was linked (7 % recombination frequency) to FPH1, a recently described locus necessary for enteroblastic conidiogenesis. Corn seedling blight assays indicated surface germinating strains of F. verticillioides were less virulent than invasively germinating strains. Assays also indicated pathogenicity segregated independently of the FPH1 locus. Invasive germination is proposed as the dominant form of spore germination among Fusarium species. Furthermore, conidia were not necessary for corn seedling disease development, but invasive germination may have enhanced the virulence of conidiating strains.  相似文献   

6.
香蕉枯萎病田间分布型及病原菌在植株上的分布   总被引:4,自引:0,他引:4  
为探讨香蕉枯萎病大田病株及其体内尖孢镰刀菌(Fusarium oxyporum f.sp.cubense)的分布情况,首先对大田病株的发病情况进行调查,通过分布频次检验、聚集指标测定、Taylor幂法则、Iwao m*-m模型等对田间病株的空间分布型进行研究,在此基础上,检验聚集均数λ,分析其聚集原因。同时,在香蕉植株不同部位取样,检测病原菌在植株体内的分布情况。结果表明:香蕉枯萎病大田病株的理论分布符合聚集类型,各项聚集度指标均满足C1、I0、m*/m1、CA0、K0。大田病株的空间图式也趋于聚集分布,聚集程度随着种群密度升高而升高,病株间互相吸引,以病株群为单元在蕉地分布均匀,其相对聚集度随种群密度变化的速率为(11.0962+0.1752)m,密度越高,相对聚集度随密度变化速率越大。这种聚集分布是环境作用导致。建立最适理论抽样数模型后,根据一定置信水平下的允许误差值可估测相应发病情况时所配套的最适理论抽样数,且随着病情加重,配套抽样数随之减少。在进行序贯抽样时,假如累计病情等级高于判据上限即可视为防治蕉地,若累计病情等级低于判据下限可视为安全蕉地,如果累计病情等级在判据上限和下限之间,需增加抽样量,但可以理论抽样模型中的最大抽样量终止抽样。最适宜的抽样方法为棋盘式取样法和单、双对角线取样法。此外,枯萎病菌在香蕉植株体内的分布因样地发病程度和植株部位不同而有显著差异,植株球茎的平均含菌量显著高于其它部位。  相似文献   

7.
Plant α-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the α-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13 756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional α-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus α-amylases was observed. The inhibitor is more effective against insect α-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional α-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

8.
Bacterial wilt (Ralstonia solanacearum) of tomato, Lycopersicon esculentum, causes a considerable amount of damage to tomato in Southern China. Biological control is one of the more promising approaches to reduce the disease incidence and yield losses caused by this disease. Based on antagonistic activity against R. solanacearum and three soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains Xa6 (Acinetobacter sp.) and Xy3 (Enterobacter sp.) were selected out of fourteen candidates as potential biocontrol agents. In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, biocontrol efficacy, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher biocontrol efficacy and plant-yield increase, and this method was also easier to operate in the field on a large scale. Field trials were conducted for further evaluation of these two antagonistic strains. In both greenhouse and field experiments, the strain Xy3 had a better control effect against bacterial wilt than Xa6 did, while Xa6 caused higher biomass or yield increases. As recorded on the 75th day after treatment in two field experiments, biocontrol efficacy of Xy3 was about 65% in both field trials, and the yield increases caused by Xa6 were 32.4 and 40.7%, respectively, in the two trials. This is the first report of an Acinetobacter sp. strain used as a BCA against Ralstonia wilt of tomato.  相似文献   

9.
【背景】已有研究表明,微生物在宿主肠道中的定殖受宿主、肠道环境、微生物物种特性和菌株来源等多个因素的影响。一般认为,来源于同类宿主的微生物菌株,在该类宿主肠道中具有定殖优势,但缺乏在物种和菌株水平上研究微生物自身特性在宿主肠道中定殖的研究报道。【目的】将不同来源(同类宿主肠道、非同类宿主肠道和非肠道环境)、具有不同生物学特性的3株香坊肠球菌(Enterococcus xiangfangensis)和4株罗伊氏乳杆菌(Lactobacillusreuteri)对无菌猪肠道进行定殖,在物种和菌株2个水平上探究物种特性和菌株来源对宿主肠道定殖的偏好性,揭示影响微生物定殖效率的关键因素。【方法】在本项研究中,将从藏猪(Tibetan pigs)、小鼠(ob/ob mice)、食蟹猴(Macaca fascicularis)和发酵食品中分离得到的多株香坊肠球菌和罗伊氏乳杆菌,制成混合菌剂对无菌巴马香猪(Bama miniature pig)进行为期4周的饲喂,并通过实时荧光定量PCR方法检测这7株菌在无菌猪肠道中的定殖情况。【结果】在物种水平上,香坊肠球菌和罗伊氏乳杆菌在无菌猪体内具有相近的定殖...  相似文献   

10.
Plant products along with biocontrol agents were tested against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc). Of the 22 plant species tested, the leaf extract of Datura metel (10%) showed complete inhibition of the mycelial growth of Foc. Two botanical fungicides, Wanis 20 EC and Damet 50 EC along with selected PGPR strains with known biocontrol activity, Pseudomonas fluorescens 1, Pf1 and Bacillus subtilis, TRC 54 were tested individually and in combination for the management of Fusarium wilt under greenhouse and field conditions. Combined application of botanical formulation and biocontrol agents (Wanis 20 EC + Pf1 + TRC 54) reduced the wilt incidence significantly under greenhouse (64%) and field conditions (75%). Reduction in disease incidence was positively correlated with the induction of defense-related enzymes peroxidase (PO) and polyphenol oxidase (PPO). Three antifungal compounds (two glycosides and one ester) in D. metel were separated and identified using TLC, RP-HPLC (Reverse Phase-High Pressure Liquid Chromatography) and mass spectrometry. In this study it is clear that combined application of botanical formulations and biocontrol agents can be very effective in the management of Fusarium wilt of banana.  相似文献   

11.
由禾谷镰刀菌(Fusarium graminearum, Fg)引起的赤霉病是限制小麦生产的主要病害之一。生物防治是一种高效且可持续的防治方法。【目的】从小麦种子内筛选具有抑制禾谷镰刀菌的菌株并对其生防潜力进行评估,为小麦赤霉病生防制剂的开发与利用提供菌种资源及理论支撑。【方法】采用平板对峙、孢子萌发法和无菌上清液抑菌试验筛选小麦种子内对禾谷镰刀菌具有拮抗活性的内生菌株;利用扫描电镜(scanning electron microscope, SEM)和共聚焦扫描电镜(confocal laser scanning microscope, CLSM)观察并分析无菌上清液对Fg的分生孢子形态、膜完整性以及胞内活性氧的影响;通过盆栽试验验证内生菌对小麦赤霉病的生防效果;应用二代Illumina HiSeq测序平台进行全基因组测序。【结果】从小麦种子中分离出一株高效抑制Fg生长的内生菌株JB7,其衰亡期无菌上清液对Fg孢子萌发抑制率高达85.23%。菌株JB7的无菌上清液使Fg孢子表面凹陷,破坏其细胞膜,造成核酸和蛋白质的渗漏,诱导Fg菌丝活性氧的累积,引起Fg菌丝可溶性蛋白和丙二醛含量的显著升高。该菌株具有分泌蛋白酶、纤维素酶、葡聚糖酶和产铁载体的能力。盆栽试验表明菌株JB7能显著降低小麦赤霉病的病情指数(P<0.05)。经全基因组学鉴定为甲基营养型芽孢杆菌(Bacillus methylotrophicus) JB7,该菌株基因组中含有12个抑菌功能的次级代谢产物合成基因簇。【结论】菌株JB7能抑制禾谷镰刀菌的生长,对小麦赤霉病有较强的防效,可作为生物防治小麦赤霉病的候选菌株。  相似文献   

12.
Several bacterial and fungal strains have been evaluated as biocontrol agents (BCAs) against Verticillium dahliae. In these studies, the BCAs were applied as a root drenching inoculum; however, this application method may have an adverse effect on the native, beneficial for the plants, microbial community. In the present study, it was evaluated whether endophytic application by stem injecting a conidial suspension of the non pathogenic Fusarium oxysporum F2 strain, isolated from a V. dahliae suppressive compost amendment, could reduce significantly Verticillium wilt symptom development in eggplants. It was revealed that stem injection of F2 seven days before transplanting the seedlings to soil infested by V. dahliae microsclerotia resulted in reduced disease severity compared to the control treatment. To visualise F2 ramification into the plant vascular system eggplant stems were injected with an EGFP transformed F2 strain. It was shown that F2 colonises effectively the plant vascular tissues over a long period of time as it was assessed by F2 DNA levels. In parallel, qPCR analysis showed that the application of F2 reduced significantly the amount of V. dahliae DNA in the stem tissues compared to the control treatment.  相似文献   

13.
Colonization of tomato greenhouses by native predatory mirid bugs at the end of the spring cycle is common in the western Mediterranean area when no broad-spectrum insecticides are applied. Due to their polyphagy, these predators interact with pest populations and also with other natural enemies present in the crop. In this work we evaluate the abundance and timing of greenhouse colonization by these predators and their interaction with the greenhouse whitefly Trialeurodes vaporariorum, a key crop pest, and its introduced parasitoid Encarsia formosa. Although quite unpredictable, natural colonization of greenhouses by Macrolophus caliginosus and Dicyphus tamaninii, the two predominant species in our location, usually leads to the establishment of predator populations in the crop that subsequently prey on greenhouse whitefly. No preference for parasitized pupae was observed in greenhouse samples, while laboratory experiments revealed a marked tendency to avoid parasitoid pupae. In our area, IPM programs for greenhouse tomatoes and other vegetables should take advantage of the presence of this predator complex by allowing the immigration and establishment of its populations without disturbing them with highly toxic and non-selective insecticides.  相似文献   

14.
Bacterial wilt (Ralstonia solanacearum) is one of the production constraints of potato (Solanum tuberosum). The intent of the study was to evaluate potential of bacterial antagonists to suppress bacterial wilt disease development and evaluate the role of the strains as plant growth-promoting rhizobacteria (PGPR) in potato. One hundred-twenty rhizosphere bacterial isolates were screened against virulent strain of Ralstonia solanacearum PPRC-Rs. After in vitro screening, six antagonistic strains (PFMRI, BS-DFS, PF9, PF20, BC, and BS-wly) with inhibition diameter >11 mm were selected and studied further in the greenhouse, in vivo. During in vivo study, the strains were evaluated for their effect in suppressing disease development in terms of area under disease progress curve (AUDPC) and increasing biomass (plant height and dry weight) of potato. Accordingly, PFMRI, BS-DFS, and PF9, significantly reduced AUDPC by 78.6, 66, and 64.3%, and wilt incidence by 82.7, 66.2, and 65.7%, respectively, compared to the control. During the sole application, the strains significantly (P < 0.0001) increased plant height by 35.6, 45.9, and 45%, and dry matter by 111, 130.4, and 129%, respectively compared to non-bacterized control. In the presence of the pathogen strain PFMRI, BS-DFS, and PF9 increased plant height by 66, 50, and 48.2%, and dry matter by 153.8, 96.8, and 92.5%, respectively compared to the pathogen treated control. Hence, the study shows that PFMRI, BS-DFS, and PF9 strains have potential use in potato bioprotection, as PGPR or in an integrated bacterial wilt management; whose effectiveness under a variety of field conditions should be investigated.  相似文献   

15.
由尖孢镰刀菌古巴专化型热带四号小种(Fusarium oxysporum f. sp. cubense tropical race4, FocTR4)引起的香蕉枯萎病(banana Fusarium wilt, BFW)是全世界范围内难以防治的真菌病害,给香蕉产业造成巨大的经济损失。本研究旨在筛选高效拮抗FocTR4的木霉生防菌株,并对其发酵代谢产物进行分离、提纯和鉴定,为香蕉枯萎病的高效生物防治提供重要生防菌株和活性化合物资源。从作物根际土壤中分离出木霉菌株,通过平板对峙培养、发酵液对病原菌孢子萌发及菌丝生长抑制,测试筛选出高效抑制FocTR4的生防木霉菌株;通过构建系统发育树明确生防菌株的分类地位;通过柱色谱法分离纯化菌株发酵液中活性成分,通过核磁共振波谱法(nuclear magnetic resonance spectroscopy, NMR)解析活性成分的结构;通过香蕉苗感病盆栽实验检测生防木霉菌株对香蕉枯萎病的防治效果。结果表明,本研究筛选到了1株拮抗FocTR4的菌株JSHA-CD-1003,平板对峙抑制率为60.6%;发酵液在24 h内能完全抑制FocTR4孢子萌发,7 d内对FocTR4菌丝生长的抑制率为52.6%;基于内转录间隔区(internal transcribed spacer, ITS)和tef1-α基因串联序列构建系统发育树,该菌株鉴定为短密木霉(Trichoderma brevicompactum),通过柱色谱法分离提纯和NMR鉴定单一活性化合物为木霉素(trichodermin),最小抑菌浓度(minimum inhibitory concentration, MIC)为25 μg/mL;盆栽生防实验表明,菌株JSHA-CD-1003发酵液对香蕉枯萎病的叶片黄化防治率为47.4%,球茎褐化防治率为52.0%。因此,JSHA-CD-1003通过产生木霉素有效抑制FocTR4孢子萌发和菌丝生长,对FocTR4引起的香蕉枯萎病具有良好的生物防治效果,是一株具有生防潜力的菌株。  相似文献   

16.
Clonostachys rosea f. catenulata (Gliocladium catenulatum) strain J1446 (formulated as Prestop WP) suppressed Fusarium root and stem rot caused by Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) on cucumber plants grown hydroponically in rockwool medium. Sixty days following application at seeding, the biocontrol agent had proliferated through the rockwool blocks and was present on cucumber roots and the crown region of the stem at populations >1 × 105 CFU/g fresh weight. Scanning electron micrographs showed that C. rosea had rapidly colonized the root surface and was associated with root hairs and epidermal cell junctions. Following transformation of the fungus with Agrobacterium tumefaciens strain AGL-1 containing the hygromycin resistance (hph) and β-glucuronidase (uidA) genes, blue-stained mycelia could be seen growing on the surface and within epidermal and cortical cells of roots, stems and shoots 3 weeks after treatment. Quantification of GUS activity by fluorometric assays showed that fungal biomass was highest in the roots and crown area, while the extent of colonization of upper stems and true leaves was variable. Higher population levels resulted following application to rockwool blocks compared to seed treatment. Application of C. rosea preceding inoculation with Forc significantly reduced pathogen populations on roots compared to plants inoculated with Forc alone. Colonization of infection sites in the root zone reduced pathogen development and disease incidence. Densities of the biocontrol agent appeared to increase in the presence of the pathogen.  相似文献   

17.
【背景】由木贼镰刀菌[Fusarium equiseti(Corda)Sacc.]引起的关防风根腐病,是近年来导致关防风产量及质量下降的主要土传病害之一。生物防治因其对环境安全及人畜无害等优势,成为目前植物病害防治的一种有效手段。【目的】挖掘关防风根际土壤中对木贼镰刀菌具有良好拮抗作用的生防菌株。【方法】采用稀释平板法分离根际土壤细菌;用滤纸片法和牛津杯法对拮抗细菌进行筛选和抑菌谱检测;用抗生素标记法标记拮抗细菌并测定其定殖能力;通过盆栽实验研究其对关防风根腐病的防效;通过形态学、生理生化特征及16S rRNA基因序列确定分类学地位。【结果】从健康关防风根际土壤中分离纯化了157株细菌,筛选获得对关防风根腐病菌具有显著抑菌作用的拮抗细菌SC-119,无菌滤液的抑菌率可达68.53%,而且兼具广谱抑菌能力和良好的定殖能力;盆栽实验表明,菌株SC-119对关防风根腐病的防治效果达到67.39%,其相对防效较接种哈茨木霉菌剂、枯草芽胞杆菌菌剂和代森锰锌分别提高了29.03%、32.26%和16.13%;对菌株SC-119进行分类学鉴定,确定其为萎缩芽胞杆菌(Bacillus atrophae...  相似文献   

18.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

19.
A phytoplankton-lytic (PL) bacterium, Bacillus cereus, capable of lysing the bloom-forming cyanobacterium Aphanizomenon flos-aquae was isolated from Lake Dianchi of Yunnan province, China. This bacterium showed lytic activities against a wide range of cyanobacteria/algae, including A. flos-aquae, Microcystis viridis, Microcystis wesenbergi, Microcystis aeruginosa, Chlorella ellipsoidea, Oscillatoria tenuis, Nostoc punctiforme, Anabaena flos-aquae, Spirulina maxima, and Selenastrum capricornutum. Chlorophyll a contents, phycocyanin contents, and photosynthetic activities of the A. flos-aquae decreased evidently in an infected culture for a period. Bacterium B. cereus attacked rapidly A. flos-aquae cells by cell-to-cell contact mechanism. It was shown that the lysis of A. flos-aquae began with the breach of the cyanobacterial cell wall, and the cyanobacterial cell appeared abnormal in the presence of the PL bacterium. Moreover, transmission electron microscope examinations revealed that a close contact between the bacterium and the cyanobacterium was necessary for lysis. Some slime extrusions produced from B. cereus assisted the bacterial cells to be in close association with and lyse the cyanobacterial cells. These findings suggested that this bacterium could play an important role in controlling the Aphanizomenon blooms in freshwaters.  相似文献   

20.
We evaluated the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to control European corn borer [Lepidoptera: Crambidae: Ostrinia nubilalis (Hübner)] in field corn in 2001 and 2002. Inoculative releases of 75,000 T. ostriniae/ha occurred in New York and Virginia in 5–10 cornfields per state when corn was at mid-whorl. Incidence of egg mass parasitism, number of stalk tunnels, incidence of ear damage, and whole-plant yield were evaluated. Parasitism of European corn borer egg masses ranged from 0 to 75% in release plots and was greater in release plots than in control plots. Individual comparisons between paired release and control plots showed no reductions in either stalk or ear damage. However, when data were combined across both years and fields, stalk and ear damage were significantly reduced in New York. In Virginia, no significant differences were detected using data obtained from one year. There were no differences in yield between release and control plots. Low densities of European corn borer, drought conditions in 1 year, and a larger plant canopy in field corn are possible reasons why T. ostriniae releases provided less control than has been observed in previous trials in sweet corn. Additional research focused on improved timing and frequency and number of releases is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号