首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular and molecular mechanisms of memory: the LTP connection.   总被引:9,自引:0,他引:9  
Studies of the cellular and molecular mechanisms of memory formation have focused on the role of long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). A combination of genetic, electrophysiological and behavioral techniques have been used to examine the possibility that LTP is a cellular mechanism of memory storage in the mammalian brain. Although a definitive answer remains elusive, it is clear that in many cases manipulations that alter LTP alter memory, and training regimens that produce memory can produce LTP-like potentiation of synaptic transmission.  相似文献   

2.
The present study attempts to determine which mechanisms underlie the retrograde facilitation of memory induced by microinjection hippocampal melanin-concentrating hormone (MCH) on the inhibitory avoidance paradigm. Previous reports using this test on the hippocampus suggest that NMDA receptor-mediated mechanisms are involved in memory processing and are also necessary for the induction of long-term potentiation (LTP) of the hippocampal dentate gyrus. In addition, alterations in expression of synaptic NMDA subunits in the hippocampus have been associated with memory formation of an inhibitory avoidance task. We have studied the effects of the neuropeptide upon the electrophysiological parameters using hippocampal slices from rats injected with the peptide and tested in step-down tests as well as possible changes in the mRNA expression of NMDA receptor subunits. We postulate that the increased facility to induce LTP, and the overexpression of this N-methyl-D-aspartate mRNA receptor subunits induced by MCH, could be behind the retrograde facilitation observed after MCH hippocampal microinjection.  相似文献   

3.
Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep–wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep–wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.  相似文献   

4.
The amygdala modulates memory consolidation and the storage of emotionally relevant information in other brain areas, and itself comprises a site of neural plasticity during aversive learning. These processes have been intensively studied in Pavlovian fear conditioning, a leading aversive learning paradigm that is dependent on the structural and functional integrity of the amygdala. The rapidness and persistence, and the relative ease, with which this conditioning paradigm can be applied to a great variety of species have made it an attractive model for neurochemical and electrophysiological investigations on memory formation. In this review we summarise recent studies which have begun to unravel cellular processes in the amygdala that are critical for the formation of long-term fear memory and have identified molecular factors and mechanisms of neural plasticity in this brain area.  相似文献   

5.
A retrograde facilitation has been demonstrated in the one trial step-down inhibitory avoidance of melanin-concentrating hormone (MCH), when it was infused into rat hippocampal formation. Considering the high density of specific binding sites for the MCH peptide on the hippocampus and the participation of this structure on learning and memory processes we have studied the effects of MCH on the hippocampal synaptic transmission. For this purpose, slices of rat hippocampus were perfused with different concentration of MCH. The main result of the present study was a long-lasting potentiation on the hippocampal evoked response on dentate gyrus induced by MCH (4-11 microM) at 30, 60 and 120 min with a maximum effect at 120 min. Previous perfusion of DL - 2- amino - 5 phosphonovaleric acid (APV, 20 microM) was unable to impair the increased hippocampal evoked response induced by MCH 4 microM. On the other hand, the channel blocker Dizocilpine (MK-801, 10 microM) completely impaired the increased hippocampal synaptic plasticity induced by MCH perfusion. We postulate the increased hippocampal synaptic efficacy induced by MCH as one of the mechanisms underlying the retrograde facilitation on the inhibitory avoidance paradigm, observed after MCH hippocampal microinjection. We cannot rule out other MCH neurochemical mechanism and other areas of the brain involved in the MCH effects.  相似文献   

6.
Memory.   总被引:5,自引:0,他引:5  
The key interrelated issues in the neurobiology of memory are to identify the neural circuitries essential for memory formation, localize sites of memory storage and analyze mechanisms of memory formation, storage and retrieval. Several circuits have now been identified in vertebrates and researchers are investigating their properties, in particular the role of glutamate receptors and long-term potentiation, in memory formation. Invertebrate preparations continue to be of value and recent studies suggest that changes in gene expression and protein synthesis may be important in long-term sensitization.  相似文献   

7.
Theories of episodic memory need to specify the encoding (representing), storage, and retrieval processes that underlie this form of memory and indicate the brain regions that mediate these processes and how they do so. Representation and re-representation (retrieval) of the spatiotemporally linked series of scenes, which constitute an episode, are probably mediated primarily by those parts of the posterior neocortex that process perceptual and semantic information. However, some role of the frontal neocortex and medial temporal lobes in representing aspects of context and high-level visual object information at encoding and retrieval cannot currently be excluded. Nevertheless, it is widely believed that the frontal neocortex is mainly involved in coordinating episodic encoding and retrieval and that the medial temporal lobes store aspects of episodic information. Establishing where storage is located is very difficult and disagreement remains about the role of the posterior neocortex in episodic memory storage. One view is that this region stores all aspects of episodic memory ab initio for as long as memory lasts. This is compatible with evidence that the amygdala, basal forebrain, and midbrain modulate neocortical storage. Another view is that the posterior neocortex only gradually develops the ability to store some aspects of episodic information as a function of rehearsal over time and that this information is initially stored by the medial temporal lobes. A third view is that the posterior neocortex never stores these aspects of episodic information because the medial temporal lobes store them for as long as memory lasts in an increasingly redundant fashion. The last two views both postulate that the medial temporal lobes initially store contextual markers that serve to cohere featural information stored in the neocortex. Lesion and functional neuroimaging evidence still does not clearly distinguish between these views. Whether the feeling that an episodic memory is familiar depends on retrieving an association between a retrieved episode and this feeling, or by an attribution triggered by a priming process, is unclear. Evidence about whether the hippocampus and medial temporal lobe cortices play different roles in episodic memory is conflicting. Identifying similarities and differences between episodic memory and both semantic memory and priming will require careful componential analysis of episodic memory.  相似文献   

8.
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.  相似文献   

9.
A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.  相似文献   

10.
11.
Bayley PJ  Gold JJ  Hopkins RO  Squire LR 《Neuron》2005,46(5):799-810
In humans and experimental animals, damage to the hippocampus or related medial temporal lobe structures severely impairs the formation of new memory but typically spares very remote memory. Questions remain about the importance of these structures for the storage and retrieval of remote autobiographical memory. We carried out a detailed volumetric analysis of structural brain images from eight memory-impaired patients. Five of the patients had damage limited mainly to the medial temporal lobe. These patients performed normally on tests of remote autobiographical memory. Three patients had medial temporal lobe damage plus significant additional damage to neocortex, and these patients were severely impaired. These findings account for previously reported differences in the recollective ability of memory-impaired patients and demonstrate that the ability to recollect remote autobiographical events depends not on the medial temporal lobe but on widely distributed neocortical areas, especially the frontal, lateral temporal, and occipital lobes.  相似文献   

12.
It seems self-evident that changes in the cellular synaptic function of the brain must underlie the formation and storage of cognitive memories. Because it has been identified as a brain area important in the formation of memory, the hippocampus has been a focus in the study of such synaptic changes. An activity-induced increase in hippocampal synaptic efficacy, known as long-term potentiation (LTP), has been widely studied as a potential substrate for memory. This paper briefly reviews some of the significant progress that has been made in understanding the cellular mechanisms that underlie LTP, including recent experiments dealing with its synaptic locus, or the question of whether the mechanism regulating LTP is pre- or postsynaptic.  相似文献   

13.
Memory for events and their spatial context: models and experiments   总被引:6,自引:0,他引:6  
The computational role of the hippocampus in memory has been characterized as: (i) an index to disparate neocortical storage sites; (ii) a time-limited store supporting neocortical long-term memory; and (iii) a content-addressable associative memory. These ideas are reviewed and related to several general aspects of episodic memory, including the differences between episodic, recognition and semantic memory, and whether hippocampal lesions differentially affect recent or remote memories. Some outstanding questions remain, such as: what characterizes episodic retrieval as opposed to other forms of read-out from memory; what triggers the storage of an event memory; and what are the neural mechanisms involved? To address these questions a neural-level model of the medial temporal and parietal roles in retrieval of the spatial context of an event is presented. This model combines the idea that retrieval of the rich context of real-life events is a central characteristic of episodic memory, and the idea that medial temporal allocentric representations are used in long-term storage while parietal egocentric representations are used to imagine, manipulate and re-experience the products of retrieval. The model is consistent with the known neural representation of spatial information in the brain, and provides an explanation for the involvement of Papez''s circuit in both the representation of heading direction and in the recollection of episodic information. Two experiments relating to the model are briefly described. A functional neuroimaging study of memory for the spatial context of life-like events in virtual reality provides support for the model''s functional localization. A neuropsychological experiment suggests that the hippocampus does store an allocentric representation of spatial locations.  相似文献   

14.
The Drosophila learning mutant, rutabaga, is deficient in the calmodulin-sensitive adenylate cyclase, and studies of associative learning in Aplysia have implicated this enzyme in neuroplasticity. Therefore, the distribution of mRNA encoding the calmodulin-sensitive adenylate cyclase in rat brain was examined by in situ hybridization. mRNA for this enzyme is expressed in specific areas of brain that have been implicated in learning and memory, including the neocortex, the hippocampus, and the olfactory system. The presence of mRNA for this enzyme in the pyramidal and granule cells of the hippocampal formation provides evidence that it is found in neurons. These data are consistent with the proposal that the calmodulin-sensitive adenylate cyclase plays an important role in learning and memory.  相似文献   

15.
The relation of transcription to memory formation   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.  相似文献   

18.
The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain.  相似文献   

19.
Neuropsychological theories proposed a critical role of the interaction between the medial temporal lobe and neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We identify neural mechanisms of this long-term memory formation process by single-unit recording and molecular biological methods in an animal model of visual pair-association task in monkeys. In our previous studies, we found a group of neurons that manifested selective responses to both of the paired associates (pair-coding neuron) in the anterior inferior temporal (IT) cortex. It provides strong evidence that single IT neurons acquire the response-selectivity through associative learning, and suggests that the reorganized neural circuits for the pair-coding neurons serve as the memory engram of the pair-association learning. In this article, we investigated further mechanisms of the neural circuit reorganization. First, we tested the role of the backward connections from the medial temporal lobe to IT cortex. lbotenic acid was injected unilaterally into the entorhinal and perirhinal cortex which provided massive backward projections ipsilaterally to IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. Second, we ask why the limbic-neocortical interactions are so important. We hypothesize that limbic neurons would undergo rapid modification of synaptic connectivity and provide backward signals that guide reorganization of neocortical neural circuits. We then investigated the molecular basis of such rapid synaptic modifiability by detecting the expression of immediate-early genes. We found strong expression of zif268 during the learning of a new set of paired associates, most intensively in area 36 of the perirhinal cortex. All these results with visual pair-association task support our hypothesis, and demonstrate that the ‘consolidation’ process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in the primate with neurophysiolocical and molecular biological approaches.  相似文献   

20.
During the formation of new episodic memories, a rich array of perceptual information is bound together for long-term storage. However, the brain mechanisms by which sensory representations (such as colors, objects, or individuals) are selected for episodic encoding are currently unknown. We describe a functional magnetic resonance imaging experiment in which participants encoded the association between two classes of visual stimuli that elicit selective responses in the extrastriate visual cortex (faces and houses). Using connectivity analyses, we show that correlation in the hemodynamic signal between face- and place-sensitive voxels and the left dorsolateral prefrontal cortex is a reliable predictor of successful face-house binding. These data support the view that during episodic encoding, "top-down" control signals originating in the prefrontal cortex help determine which perceptual information is fated to be bound into the new episodic memory trace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号