首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonsense-mediated mRNA decay (NMD) in mammalian cells depends on phosphorylation of Upf1, an RNA-dependent ATPase and 5'-to-3' helicase. Upf1 phosphorylation is mediated by Smg1, a phosphoinositol 3-kinase-related protein kinase. Here, we describe a human protein, which we call hSmg5/7a, that manifests similarity to Caenorhabditis elegans NMD factors CeSMG5 and CeSMG7, as well as two Drosophila melanogaster proteins that are also similar to the C. elegans NMD factors. Results indicate that hSmg5/7a functions in the dephosphorylation of Upf1. Furthermore, hSmg5/7a copurifies with Upf1, Upf2, Upf3X, Smg1, and the catalytic subunit of protein phosphatase 2A. We also demonstrate that Upf2, another factor involved in NMD, is a phosphoprotein. However, hSmg5/7a plays no role in the dephosphorylation of Upf2. These data indicate that hSmg5/7a targets protein phosphatase 2A to Upf1 but not Upf2. Results of Western blotting reveal that hSmg5/7a is mostly cytoplasmic in HEK293T cells.  相似文献   

2.
Targeting of aberrant mRNAs to cytoplasmic processing bodies   总被引:12,自引:0,他引:12  
Sheth U  Parker R 《Cell》2006,125(6):1095-1109
In eukaryotes, a specialized pathway of mRNA degradation termed nonsense-mediated decay (NMD) functions in mRNA quality control by recognizing and degrading mRNAs with aberrant termination codons. We demonstrate that NMD in yeast targets premature termination codon (PTC)-containing mRNA to P-bodies. Upf1p is sufficient for targeting mRNAs to P-bodies, whereas Upf2p and Upf3p act, at least in part, downstream of P-body targeting to trigger decapping. The ATPase activity of Upf1p is required for NMD after the targeting of mRNAs to P-bodies. Moreover, Upf1p can target normal mRNAs to P-bodies but not promote their degradation. These observations lead us to propose a new model for NMD wherein two successive steps are used to distinguish normal and aberrant mRNAs.  相似文献   

3.
4.
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to promote RNA cleavage. In mammals, the degradation of PTC-containing mRNAs is triggered by the exon–junction complex (EJC) through binding of its constituents Upf2 and Upf3 to Upf1. The complex formed eventually induces translational repression and recruitment of decay enzymes. Mechanisms by which physiological mRNAs are targeted by the NMD machinery in the absence of an EJC have been described but still are discussed controversially. Here, we report that the DEAD box proteins Ddx5/p68 and its paralog Ddx17/p72 also bind the Upf complex by physical interaction with Upf3, thereby interfering with the binding of EJC. By activating the NMD machinery, Ddx5 is shown to regulate the expression of its own, Ddx17 and Smg5 mRNAs. For NMD triggering, the adenosine triphosphate-binding activity of Ddx5 and the 3′-untranslated region of substrate mRNAs are essential.  相似文献   

5.
The Upf1 protein in yeast has been implicated in the modulation of efficient translation termination as well as in the accelerated turnover of mRNAs containing premature stop codons, a phenomenon called nonsense-mediated mRNA decay (NMD). A human homolog of the yeast UPF1, termed HUpf1/RENT1, has also been identified. The HUpf1 has also been shown to play a role in NMD in mammalian cells. Comparison of the yeast and human UPF1 proteins demonstrated that the amino terminal cysteine/histidine-rich region and the region comprising the domains that define this protein as a superfamily group I helicase have been conserved. The yeast Upf1p demonstrates RNA-dependent ATPase and 5' --> 3' helicase activities. In this paper, we report the expression, purification, and characterization of the activities of the human Upf1 protein. We demonstrate that human Upf1 protein displays a nucleic-acid-dependent ATPase activity and a 5'--> 3' helicase activity. Furthermore, human Upf1 is an RNA-binding protein whose RNA-binding activity is modulated by ATP. Taken together, these results indicate that the activities of the Upf1 protein are conserved across species, reflecting the conservation of function of this protein throughout evolution.  相似文献   

6.
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality-control mechanism that recognizes and degrades mRNAs with premature termination codons (PTCs). In yeast, PTC-containing mRNAs are targeted to processing bodies (P-bodies), and yeast strains expressing an ATPase defective Upf1p mutant accumulate P-bodies. Here we show that in human cells, an ATPase-deficient UPF1 mutant and a fraction of UPF2 and UPF3b accumulate in cytoplasmic foci that co-localize with P-bodies. Depletion of the P-body component Ge-1, which prevents formation of microscopically detectable P-bodies, also impairs the localization of mutant UPF1, UPF2, and UPF3b in cytoplasmic foci. However, the accumulation of the ATPase-deficient UPF1 mutant in P-bodies is independent of UPF2, UPF3b, or SMG1, and the ATPase-deficient UPF1 mutant can localize into the P-bodies independent of its phosphorylation status. Most importantly, disruption of P-bodies by depletion of Ge-1 affects neither the mRNA levels of PTC-containing reporter genes nor endogenous NMD substrates. Consistent with the recently reported decapping-independent SMG6-mediated endonucleolytic decay of human nonsense mRNAs, our results imply that microscopically detectable P-bodies are not required for mammalian NMD.  相似文献   

7.
8.
9.
A method was developed to assess the functional significance of a sequence motif in yeast Upf3p, a protein required for nonsense-mediated mRNA decay (NMD). The motif lies at the edge of the Upf3p-Upf2p interaction domain, but at the same time resembles the canonical leucine-rich nuclear export sequence (NES) found in proteins that bind Crm1p exportin. To test the function of the putative NES, site-directed mutations that cause substitutions of conserved NES-A residues were first selected to identify hypermorphic alleles. Next, a portable Crm1p-binding NES from HIV-1 Rev protein that functions in yeast was fused en masse to the C-terminus of variant Upf3 proteins using loxP sites recognized by bacterial cre-recombinase. Finally, variant Upf3-Rev proteins that were functional in NMD were selected and examined for the types of amino acid substitutions present in NES-A. The mutational analysis revealed that amino acid substitutions in the Upf3 NES impair both nuclear export and the Upf2p-Upf3p interaction, both of which are required for Upf3p to function in NMD. The method described in this report could be modified for the genetic analysis of a variety of portable protein domains. Published: October 1, 2004.  相似文献   

10.
11.
Rapid turnover of nonsense-containing mRNAs in Saccharomyces cerevisiae is dependent on Upf1p, Nmd2p, and Upf3p, the products of the UPF1, NMD2/UPF2, and UPF3 genes, respectively. We showed previously that Upf1p and Nmd2p interact and that this interaction is required for nonsense-mediated mRNA decay (F. He and A. Jacobson, Genes Dev. 9:437-454, 1995; F. He, A. H. Brown, and A. Jacobson, RNA 2:153-170, 1996). In this study we have used the yeast two-hybrid system to define other protein-protein interactions among the essential components of this decay pathway. Nmd2p-Upf3p and Upf1p-Upf3p interactions were identified, and the respective domains involved in these interactions were delineated by deletion analysis. The domains of Upf1p and Upf3p putatively involved in their mutual interaction were found to correspond to the domains on the two proteins which interact with Nmd2p, suggesting that Nmd2p bridges Upf1p and Upf3p. This conclusion was reinforced by experiments showing that: (i) deletion of NMD2 completely abolishes interactions between Upf1p and Upf3p and (ii) overexpression of full-length Nmd2p or Nmd2p fragments that retain Upf1p- and Upf3p-interacting domains promotes 10- to 200-fold enhancement of Upf1p-Nmd2p-Upf3p complex formation. These results; the observation that cells harboring either single or multiple deletions of UPF1, NMD2, and UPF3 inhibit nonsense-mediated mRNA decay to the same extent; and an analysis of the possible targets of a dominant-negative NMD2 allele indicate that Upf1p, Nmd2p, Upf3p, and at least one other factor are functionally dependent, interacting components of the yeast nonsense-mediated mRNA decay pathway.  相似文献   

12.
13.
Premature termination (nonsense) codons trigger rapid mRNA decay by the nonsense-mediated mRNA decay (NMD) pathway. Two conserved proteins essential for NMD, UPF1 and UPF2, are phosphorylated in higher eukaryotes. The phosphorylation and dephosphorylation of UPF1 appear to be crucial for NMD, as blockade of either event in Caenorhabditis elegans and mammals largely prevents NMD. The universality of this phosphorylation/dephosphorylation cycle pathway has been questioned, however, because the well-studied Saccharomyces cerevisiae NMD pathway has not been shown to be regulated by phosphorylation. Here, we used in vitro and in vivo biochemical techniques to show that both S. cerevisiae Upf1p and Upf2p are phosphoproteins. We provide evidence that the phosphorylation of the N-terminal region of Upf2p is crucial for its interaction with Hrp1p, an RNA-binding protein that we previously showed is essential for NMD. We identify specific amino acids in Upf2p's N-terminal domain, including phosphorylated serines, which dictate both its interaction with Hrp1p and its ability to elicit NMD. Our results indicate that phosphorylation of UPF1 and UPF2 is a conserved event in eukaryotes and for the first time provide evidence that Upf2p phosphorylation is crucial for NMD.  相似文献   

14.
mRNAs that contain premature stop codons are selectively degraded in all eukaryotes tested, a phenomenon termed "nonsense-mediated mRNA decay" (NMD) or "mRNA surveillance." NMD may function to eliminate aberrant mRNAs so that they are not translated, because such mRNAs might encode deleterious polypeptide fragments. In both yeasts and nematodes, NMD is a nonessential system. Mutations affecting three yeast UPF genes or seven nematode smg genes eliminate NMD. We report here the molecular analysis of smg-2 of Caenorhabditis elegans. smg-2 is homologous to UPF1 of yeast and to RENT1 (also called HUPF1), a human gene likely involved in NMD. The striking conservation of SMG-2, Upf1p, and RENT1/HUPF1 in both sequence and function suggests that NMD is an ancient system, predating the divergence of most eukaryotes. Despite similarities in the sequences of SMG-2 and Upf1p, expression of Upf1p in C. elegans does not rescue smg-2 mutants. We have prepared anti-SMG-2 polyclonal antibodies and identified SMG-2 on Western blots. SMG-2 is phosphorylated, and mutations of the six other smg genes influence the state of SMG-2 phosphorylation. In smg-1, smg-3, and smg-4 mutants, phosphorylation of SMG-2 was not detected. In smg-5, smg-6, and smg-7 mutants, a phosphorylated isoform of SMG-2 accumulated to abnormally high levels. In smg-2(r866) and smg-2(r895) mutants, which harbor single amino acid substitutions of the SMG-2 nucleotide binding site, phosphorylated SMG-2 accumulated to abnormally high levels, similar to those observed in smg-5, smg-6, and smg-7 mutants. We discuss these results with regard to the in vivo functions of SMG-2 and NMD.  相似文献   

15.
16.
17.
Kervestin S  Li C  Buckingham R  Jacobson A 《Biochimie》2012,94(7):1560-1571
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.  相似文献   

18.
19.
20.
In yeast the UPF1, UPF2 and UPF3 genes encode three interacting factors involved in translation termination and nonsense-mediated mRNA decay (NMD). UPF1 plays a central role in both processes. In addition, UPF1 was originally isolated as a multicopy suppressor of mitochondrial splicing deficiency, and its deletion leads to an impairment in respiratory growth. Here, we provide evidence that inactivation of UPF2 or UPF3, like that of UPF1, leads to an impairment in respiratory competence, suggesting that their products, Upf1p, Upf2p and Upf3p, are equivalently involved in mitochondrial biogenesis. In addition, however, we show that only Upf1p acts as a multicopy suppressor of mitochondrial splicing deficiency, and its activity does not require either Upf2p or Upf3p. Mutations in the conserved cysteine- and histidine-rich regions and ATPase and helicase motifs of Upf1p separate the ability of Upf1p to complement the respiratory impairment of a Deltaupf1 strain from its ability to act as a multicopy suppressor of mitochondrial splicing deficiency, indicating that distinct pathways express these phenotypes. In addition, we show that, when overexpressed, Upf1p is not detected within mitochondria, suggesting that its role as multicopy suppressor of mitochondrial splicing deficiency is indirect. Furthermore, we provide evidence that cells overexpressing certain upf1 alleles accumulate a phosphorylated isoform of Upf1p. Altogether, these results indicate that overexpression of Upf1p compensates for mitochondrial splicing deficiency independently of its role in mRNA surveillance, which relies on Upf1p-Upf2p-Upf3p functional interplay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号