首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

2.
Neuronal calcium stores   总被引:4,自引:0,他引:4  
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.  相似文献   

3.
P Pinton  T Pozzan    R Rizzuto 《The EMBO journal》1998,17(18):5298-5308
In the past few years, intracellular organelles, such as the endoplasmic reticulum, the nucleus and the mitochondria, have emerged as key determinants in the generation and transduction of Ca2+ signals of high spatio-temporal complexity. Little is known about the Golgi apparatus, despite the fact that Ca2+ within its lumen controls essential processes, such as protein processing and sorting. We report the direct monitoring of the [Ca2+] in the Golgi lumen ([Ca2+]Golgi) of living HeLa cells, using a specifically targeted Ca2+-sensitive photoprotein. With this probe, we show that, in resting cells, [Ca2+]Golgi is approximately 0.3 mM and that Ca2+ accumulation by the Golgi has properties distinct from those of the endoplasmic reticulum (as inferred by the sensitivity to specific inhibitors). Upon stimulation with histamine, an agonist coupled to the generation of inositol 1,4,5-trisphosphate (IP3), a large, rapid decrease in [Ca2+]Golgi is observed. The Golgi apparatus can thus be regarded as a bona fide IP3-sensitive intracellular Ca2+ store, a notion with major implications for the control of organelle function, as well as for the generation of local cytosolic Ca2+ signals.  相似文献   

4.
Capacitative regulation of calcium entry is a major mechanism of Ca2+ influx into electrically non-excitable cells, but it also operates in some excitable ones. It participates in the refilling of intracellular calcium stores and in the generation of Ca2+ signals in excited cells. The mechanism which couples depletion of intracellular calcium stores located in the endoplasmic reticulum with opening of store-operated calcium channels in the plasma membrane is not clearly understood. Mitochondria located in close proximity to Ca2+ channels are exposed to high Ca2+ concentration, and therefore, they are able to accumulate this cation effectively. This decreases local Ca2+ concentration and thereby affects calcium-dependent processes, such as depletion and refilling of the intracellular calcium stores and opening of the store-operated channels. Finally, mitochondria modulate the intensity and the duration of calcium signals induced by extracellular stimuli. Ca2+ uptake by mitochondria requires these organelles to be in the energized state. On the other hand, Ca2+ flux into mitochondria stimulates energy metabolism. To sum up, mitochondria couple cellular metabolism with calcium homeostasis and signaling.  相似文献   

5.
The endoplasmic reticulum is not the only major agonist-releasable Ca2+ store within cells; it is now clear that virtually all organelles so far studied have the ability to act as mobilizable Ca2+ stores. From recent findings with regard to Ca2+ transportation and Ca2+ homeostasis within a variety of cell organelles such as the mitochondria, nucleus, Golgi and lysosomes, it emerges that many of these organellar Ca2+ stores appear to interact with each other, adding a further level of complexity to Ca2+ signalling events.  相似文献   

6.
Trypanosoma cruzi epimastigotes maintained an intracellular free calcium concentration of about 0.15 microM, as measured with the fluorescent indicator Fura-2. The maintenance of low [Ca2+]i is energy-dependent since it is disrupted by KCN and FCCP. When the cells were permeabilized with digitonin, the steady-state free Ca2+ concentration in the absence of ATP was about 0.7 microM. The additional presence of ATP resulted in a steady-state level close to 0.1-0.2 microM which compares favorably with the concentration detected in intact cells. Intracellular Ca2+ uptake at high levels of free Ca2+ (greater than 1 microM) was due to energy-dependent mitochondrial uptake as indicated by its FCCP-sensitivity. However, as the free Ca2+ concentration was lowered from 1 microM, essentially all uptake was due to the ATP-dependent Ca2+ sequestration by the endoplasmic reticulum as indicated by its stimulation by ATP, and its inhibition by sodium vanadate. High concentrations of the calmodulin antagonist trifluoperazine, inhibited both the Ca2+ uptake by the endoplasmic reticulum and by the mitochondria, while calmidazolium released Ca2+ from both compartments. In addition, trifluoperazine and calmidazolium inhibited respiration and collapsed the mitochondrial membrane potential of T. cruzi, thus indicating non-specific effects unrelated to calmodulin.  相似文献   

7.
Calciosomes are intracellular organelles in HL-60 cells, neutrophils and various other cell types, characterized by their content of a Ca2+-binding protein that is biochemically and immunologically similar to calsequestrin (CS) from muscle cells. In subcellular fractionation studies the CS-like protein copurifies with functional markers of the inositol 1,4,5-trisphosphate (IP3) releasable Ca2+-store. These markers (ATP-dependent Ca2+-uptake and IP3-induced Ca2+-release) show a subcellular distribution which is clearly distinct from the endoplasmic reticulum and other organelles. In morphological studies, antibodies against rabbit skeletal muscle CS protein specifically stained hitherto unrecognized vesicles with a diameter between 50 and 250 nm. Thus both, biochemical and morphological studies indicate that the calsequestrin containing intracellular Ca2+-store, now referred to as the calciosome, is distinct from other known organelles such as endoplasmic reticulum. Calciosomes are likely to play an important role in intracellular Ca2+-homeostasis. They are possibly the intracellular target of inositol 1,4,5-trisphosphate and thus the source of Ca2+ that is redistributed into the cytosol following surface receptor activation in non-muscle cells.  相似文献   

8.
N. Kraus-Friedmann   《Cell calcium》1990,11(10):625-640
Hepatic parenchymal cells maintain intracellular total and cytosolic free Ca2+ levels by: entry of Ca2+ through channels, extrusion of Ca2+ by an outwardly directed Ca2+ pump, and controlled sequestration into intracellular pools. The mechanism of Ca2+ inflow is poorly characterized. The plasma membrane Ca2+ channels seem to share some of the characteristics of Ca2+ channels in excitable cells, but also differ from them. The outwardly directed plasma membrane Ca2(+)-ATPase is a calmodulin independent, P-type enzyme. Ca2+ uptake into the endoplasmic reticulum is due to the activity of a different Ca2(+)-ATPase, which is similar in molecular weight and shares antigenic determinants with the sarcoplasmic reticulum enzyme. In addition, mitochondria and nuclei also take up calcium. The exact mechanism by which Ca2+ is released from intracellular organelles is not well known. Several mechanisms for Ca2+ release from the endoplasmic reticulum were reported, including IP3 and GTP-induced. The most effective identified way of eliciting Ca2+ release from microsomal fraction is by the oxidation of critical -SH groups. This mechanism is likely to be involved in the rise of cytosolic Ca2+ observed in many situations of hepatocellular injury. In addition to being sequestered into subcellular organelles, some of the intracellular Ca2+ is bound to specific Ca2+ binding proteins. Both calmodulin and members of the annexin family were identified in the liver. Stimulation of the liver with gluconeogenic hormones results in increased Ca2+ entry into the cell, the release of Ca2+ from intracellular pools, and an oscillatory increase in free cytosolic Ca2+ levels. Extensive research is still needed for the elucidation of the exact mechanisms by which these events occur.  相似文献   

9.
Fixation in the presence of oxalate was used to demonstrate the electron-dense Ca2+ precipitates in the endoplasmic reticulum in glomus cells of the carotid body. Glomus cells in intact carotid bodies or cells dissociated from the organ by treatment with collagenase were studied electron microscopically. In the intact organ as well as in dissociated glomus cells, electron-dense endoplasmic reticulum-like profiles were seen closely associated with mitochondria, while these lacked reaction product. The interspace between mitochondria was occupied by electron-dense, slightly distended ER, which appeared to contact the outer membrane of the mitochondria. Occasionally, a mitochondrion was in contact with several ER profiles or the ER formed an electron-dense 'cap' on the mitochondrion. The electron-dense precipitates could be removed from ultrathin sections with the calcium chelator ethyleneglycol-2(2-aminoethyl tetra-acetic acid) (EGTA). It is tentatively suggested that the endoplasmic reticulum could be involved in intracellular buffering of Ca2+ in the glomus cell, as has been previously suggested for neurons.  相似文献   

10.
NAADP (nicotinic acid-adenine dinucleotide phosphate) is a potent Ca2+-mobilizing messenger implicated in many Ca2+-dependent cellular processes. It is highly unusual in that it appears to trigger Ca2+ release from acidic organelles such as lysosomes. These signals are often amplified by archetypal Ca2+ channels located in the endoplasmic reticulum. Recent studies have converged on the TPCs (two-pore channels) which localize to the endolysosomal system as the likely primary targets through which NAADP mediates its effects. 'Chatter' between TPCs and endoplasmic reticulum Ca2+ channels is disrupted when TPCs are directed away from the endolysosomal system. This suggests that intracellular Ca2+ release channels may be closely apposed, possibly at specific membrane contact sites between acidic organelles and the endoplasmic reticulum.  相似文献   

11.
Ca2+-specific minielectrodes were used to monitor changes in the ambient free Ca2+ concentration [( Ca2+]a) maintained by the intracellular organelles of permeabilized GH3 cells. Mitochondria maintained a [Ca2+]a steady state of around 500 nM and displayed a very high capacity for Ca2+ uptake. A nonmitochondrial pool, tentatively identified as the endoplasmic reticulum (ER), displayed higher affinity for Ca2+ by maintaining a steady state of approximately 170 nM. The capacity of this pool was around 10 nmol/mg cell protein. Inositol 1,4,5-trisphosphate (InsP3) released Ca2+ specifically from the ER, with an EC50 of approximately 2 microM, and gave maximal release of around 4 nmol Ca2+/mg of cell protein. Repeated InsR3 additions under conditions allowing for functional mitochondrial transport resulted in successively attenuated peaks, leading eventually to the depletion of the InsP3 sensitive portion of the ER. However, Ca2+ could still be released from the total ER pool with the ATPase inhibitor, vanadate. This InsP3-insensitive store did not reaccumulate InsP3 releasable Ca2+ nor could it directly refill the sensitive pool. However, the attenuation of the InsP3 responses could be overcome by repleting the sensitive pool with exogenous Ca2+ or by inhibiting Ca2+ uptake into the mitochondria. The results suggest: 1) the ER is the major intracellular organelle buffering Ca2+ in nonstimulated GH3 cells; 2) InsP3 releases Ca2+ from only a portion of the ER; 3) the InsP3-sensitive and -insensitive ER pools are functionally distinct; 4) InsP3 addition results in a transfer of Ca2+ from the ER to the mitochondria.  相似文献   

12.
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show that half of the chromaffin-cell mitochondria exhibit surprisingly rapid millimolar Ca2+ transients upon stimulation of cells with acetylcholine, caffeine or high concentrations of potassium ions. Our results show a tight functional coupling of voltage-dependent Ca2+ channels on the plasma membrane, ryanodine receptors on the endoplasmic reticulum, and mitochondria. Cell stimulation generates localized Ca2+ transients, with Ca2+ concentrations above 20-40 microM, at these functional units. Protonophores abolish mitochondrial Ca2+ uptake and increase stimulated secretion of catecholamines by three- to fivefold. These results indicate that mitochondria modulate secretion by controlling the availability of Ca2+ for exocytosis.  相似文献   

13.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

14.
The concentration of free Ca2+ in the cytoplasm and organelles of individual mouse pancreatic beta-cells was estimated with dual wavelength microfluorometry and the indicators Fura-2 and furaptra. Measuring the increase of cytoplasmic Ca2+ resulting from intracellular mobilization of the ion in ob/ob mouse beta-cells, most organelle calcium (92%) was found in acidic compartments released when combining the Ca2+ ionophore Br-A23187 with a protonophore. Only 3-4% of organelle calcium was recovered from a pool sensitive to the Ca(2+)-ATPase inhibitor thapsigargin. Organelle Ca2+ was also measured directly in furaptra-loaded beta-cells after controlled plasma membrane permeabilization. The permeabilizing agent alpha-toxin was superior to digitonin in preserving the integrity of intracellular membranes, but digitonin provided more reproducible access to intracellular sites. After permeabilization, the thapsigargin-sensitive fraction of Ca2+ detected by furaptra was as high as 90%, suggesting that the indicator essentially measures Ca2+ in endoplasmic reticulum (ER). Both alpha-toxin- and digitonin-permeabilized cells exhibited ATP-dependent uptake of Ca2+ into thapsigargin-sensitive stores with half-maximal and maximal filling at 6-11 microM and 1 mM ATP respectively. Most of the thapsigargin-sensitive Ca2+ was mobilized by inositol 1,4,5-trisphosphate (IP3), whereas caffeine, ryanodine, cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate lacked effects both in beta-cells from ob/ob mice and normal NMRI mice. Mobilization of organelle Ca2+ by 4-chloro-3-methylphenol was attributed to interference with the integrity of the ER rather than to activation of ryanodine receptors. The observations emphasize the importance of IP3 for Ca2+ mobilization in pancreatic beta-cells, but question a role for ryanodine receptor agonists.  相似文献   

15.
Experiments aimed at the partial reconstitution of the intracellular transport systems regulating the cytosolic free Ca2+ homeostasis are reported. Rat insulinoma subcellular fractions enriched in mitochondria, endoplasmic reticulum (microsomes), and secretory granules were studied. The ambient free Ca2+ concentration maintained by the separate or combined organelles was determined with a Ca2+-selective minielectrode. The data demonstrate that ambient [Ca2+] is established by the microsomes, not by the mitochondria or the secretory granules, in the range of resting cytosolic Ca2+ concentrations (0.1-0.2 microM Ca2+). Furthermore, the microsomes are able to deplete largely the mitochondria of their exchangeable calcium. Nonetheless, both mitochondria and microsomes, but not secretory granules, function as a coordinated unit to restore the previous ambient [Ca2+] following its perturbation. Thus, mitochondria play a major role in bringing down rapidly ambient [Ca2+] to the submicromolar range, whereas the endoplasmic reticulum acts as a relay in the transport mechanisms which lower [Ca2+] to the resting level.  相似文献   

16.
The work is devoted to the investigation of ethanol direct effect on the transmembrane Ca2+ metabolism in the intracellular structures of myometrium. In the experiments in vitro it has been shown that the Mg2+, ATP-dependent system for Ca2+ accumulation in endoplasmic reticulum is more sensitive then Ca(2+)-accumulating system in mitochondria. It has also been found that the oxytocin insensitive part of Mg2+, ATP-dependent Ca2+ accumulation of the endoplasmic reticulum is less resistant to ethanol inhibition than the oxytocin sensitive one. The data above revealed allow to discuss mechanism of ethanol action on the intracellular Ca2+ homeostasis in myometrium.  相似文献   

17.
18.
Addition of ATP to the incubation medium of freshly isolated rat hepatocytes causes a marked inhibition of the efflux of Ca2+ from the cells, and its accumulation in intracellular compartments. After an initial rise in cytosolic free Ca2+ concentration, as indicated by the activation of phosphorylase, Ca2+ is preferentially sequestered in the mitochondria, without any apparent contribution by the endoplasmic reticulum. Impairment of mitochondrial Ca2+ homeostasis by pyridine nucleotide oxidation associated with tert-butyl hydroperoxide metabolism, prevents the ATP-dependent cellular Ca2+ accumulation and causes a release of Ca2+ from the hepatocytes into the medium. Conversely, maintenance of the mitochondrial pyridine nucleotides in a more reduced state, e. g. in presence of 3-hydroxybutyrate in the medium, prevents this hydroperoxide-induced release of intracellular Ca2+. Under conditions of impaired mitochondrial Ca2+ sequestration, there appears to be a redistribution of a minor fraction of the intracellular Ca2+ from the mitochondria to the endoplasmic reticulum. Our results provide additional evidence for the critical involvement of the plasma membrane Ca2+-extruding system in the physiological regulation of the cytosolic free Ca2+ concentration in hepatocytes, and suggest that the mitochondria play a more important role than the endoplasmic reticulum in the regulation of the cytosolic free Ca2+ level when the plasma membrane Ca2+ pump is inhibited.  相似文献   

19.
When Trypanosoma brucei procyclic trypomastigotes were permeabilized with digitonin in a reaction medium containing MgATP, succinate, and 3.5 microM free Ca2+, they lowered the medium Ca2+ concentration to the submicromolar level (0.05-0.1 microM), a range that correlates favorably with that detected in the intact cells with fura-2. The carbonyl cyanide p-trifluoromethoxyphenylhydrazone-insensitive Ca2+ uptake, certainly represented by the endoplasmic reticulum, was completely inhibited by 500 microM vanadate. When vanadate instead of carbonyl cyanide p-trifluoromethoxyphenylhydrazone was present, the Ca2+ set point was increased to 0.6-0.7 microM. The succinate dependence and carbonyl cyanide p-trifluoromethoxyphenylhydrazone sensitivity of the later Ca2+ uptake indicate that it may be exerted by the mitochondria. When bloodstream trypomastigotes were used, neither succinate nor alpha-glycerophosphate stimulated the mitochondrial Ca2+ uptake. The mitochondrial Ca2+ transport could be measured only in the presence of ATP and 500 microM vanadate to inhibit the endoplasmic reticulum uptake. Bloodstream trypomastigotes have a lower cytosolic Ca2+ concentration, as detected with fura-2 and a smaller extramitochondrial Ca2+ pool than procyclic trypomastigotes. Despite the presence of inositol phosphates, as determined by [3H]inositol incorporation, and the large extramitochondrial Ca2+ pool of procyclic trypomastigotes (61.7 nmol of Ca2+/mg of protein), no inositol 1,4,5-trisphosphate-sensitive Ca2+ release could be detected in these parasites.  相似文献   

20.
A preparation of sea urchin eggs permeabilized with digitonin (40 microM for 2.5 min) was used to study the kinetic characteristics of the two cellular compartments suspected to play a key role in cellular calcium transfer during fertilization: an ATP-dependent Ca2+ pool (Km = 0.47 microM; Vm = 0.48 nmol/min.mg protein) probably located in the endoplasmic reticulum and a mitochondrial Ca2+ pool (Km = 1.50 microM; Vm = 0.12 nmol/min.mg protein). Fertilization triggered a decrease in the rate of ATP dependent uptake by the non-mitochondrial pool (Km = 0.59 microM; Vm = 0.15 nmol/min.mg protein) while it transiently increased the Ca2+ uptake into mitochondria (2 min post-fertilization: Km = 2.20 microM; Vm = 0.40 nmol/min.mg protein). Microanalysis studies performed on quickly frozen, freeze substituted and embedded eggs showed a transient Ca2+ enrichment of mitochondria soon after fertilization thus suggesting that mitochondria behave as a Ca2+ sink at fertilization. Results are discussed in relation to the role of endoplasmic reticulum and mitochondria in handling free calcium during the early period following sea urchin egg fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号