首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agar JN  Krebs C  Frazzon J  Huynh BH  Dean DR  Johnson MK 《Biochemistry》2000,39(27):7856-7862
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins.  相似文献   

3.
Iron-sulfur proteins play physiologically important roles in a variety of metabolic processes in eukaryotes. In plants, iron-sulfur cluster biosynthesis is known to take place both in mitochondria and chloroplasts. However no components that mediate iron-sulfur cluster delivery in the plant cell cytosol have been identified so far. Here we report identification and characterization of a cytosolic Nbp35 homolog named AtNbp35 from Arabidopsis thaliana. AtNbp35-deficient Arabidopsis mutants were seedling lethal. Unlike the previously characterized yeast ScNbp35 which forms a heterotetramer with ScCfd1, AtNbp35 forms a homodimer in the cytosol and can harbor both [4Fe-4S] and [2Fe-2S] clusters on its amino- and carboxyl-terminal domains, respectively. Taken together, our data suggest that Nbp35 plays a pivotal role in iron-sulfur cluster assembly and delivery in the plant cell cytosol as a bifunctional molecular scaffold.  相似文献   

4.
5.
6.
The geometry proposition that "four points not in a plane describe one and only one sphere" provides a novel tool for analyzing protein-induced distortions in [4Fe-4S] clusters. A geometrically perfect reference structure comprises interlaced, regular tetrahedra of Fe, S, and S gamma atoms having T(d) symmetry. Three circumspheres are defined by the three sets of four atoms, the circumcenters of which are unique points within the cluster. The structure is thus re-defined by the positions of the circumcenters in xyz space and the r, theta, phi of each atom on its respective sphere. Analysis of 12 high-resolution structures of protein-bound and small molecule [4Fe-4S](SR)(4) clusters revealed: (a) the circumcenters are generally non-coincident by approximately 0.01 to approximately 0.06 A; (b) the Fe radius, r(Fe), is nominally independent of core oxidation state, having values between 1.66 to 1.69 A, whereas r(S) and r(SG), which have ranges of 2.18-2.24 A and 3.87-3.94 A, respectively, both increase by as much as approximately 3% upon reduction from the 3+ to the 1+ core valence; (c) deviation of some atoms from the theta, phi of a perfect tetrahedron can be large, approximately 10 degrees, and sets of atoms can show patterns of motion on their spheres that result from changes in Fe-S bond lengths. Density functional theory calculations suggest that the [4Fe-4S] core itself requires rather little energy to distort (approximately 2 kcal/mol), whereas significantly more energy is required to distort the Sgamma shell (~4 kcal/mol) to that of cluster I in Clostridium acidurici ferredoxin.  相似文献   

7.
Ugulava NB  Gibney BR  Jarrett JT 《Biochemistry》2000,39(17):5206-5214
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  相似文献   

8.
Lipoyl synthase (LS) is a member of a recently established class of metalloenzymes that use S-adenosyl-l-methionine (SAM) as the precursor to a high-energy 5'-deoxyadenosyl 5'-radical (5'-dA(*)). In the LS reaction, the 5'-dA(*) is hypothesized to abstract hydrogen atoms from C-6 and C-8 of protein-bound octanoic acid with subsequent sulfur insertion, generating the lipoyl cofactor. Consistent with this premise, 2 equiv of SAM is required to synthesize 1 equiv of the lipoyl cofactor, and deuterium transfer from octanoyl-d(15) H-protein of the glycine cleavage system-one of the substrates for LS-has been reported [Cicchillo, R. M., Iwig, D. F., Jones, A. D., Nesbitt, N. M., Baleanu-Gogonea, C., Souder, M. G., Tu, L., and Booker, S. J. (2004) Biochemistry 43, 6378-6386]. However, the exact identity of the sulfur donor remains unknown. We report herein that LS from Escherichia coli can accommodate two [4Fe-4S] clusters per polypeptide and that this form of the enzyme is relevant to turnover. One cluster is ligated by the cysteine amino acids in the C-X(3)-C-X(2)-C motif that is common to all radical SAM enzymes, while the other is ligated by the cysteine amino acids residing in a C-X(4)-C-X(5)-C motif, which is conserved only in lipoyl synthases. When expressed in the presence of a plasmid that harbors an Azotobacter vinelandii isc operon, which is involved in Fe/S cluster biosynthesis, the as-isolated wild-type enzyme contained 6.9 +/- 0.5 irons and 6.4 +/- 0.9 sulfides per polypeptide and catalyzed formation of 0.60 equiv of 5'-deoxyadenosine (5'-dA) and 0.27 equiv of lipoylated H-protein per polypeptide. The C68A-C73A-C79A triple variant, expressed and isolated under identical conditions, contained 3.0 +/- 0.1 irons and 3.6 +/- 0.4 sulfides per polypeptide, while the C94A-C98A-C101A triple variant contained 4.2 +/- 0.1 irons and 4.7 +/- 0.8 sulfides per polypeptide. Neither of these variant proteins catalyzed formation of 5'-dA or the lipoyl group. M?ssbauer spectroscopy of the as-isolated wild-type protein and the two triple variants indicates that greater than 90% of all associated iron is in the configuration [4Fe-4S](2+). When wild-type LS was reconstituted with (57)Fe and sodium sulfide, it harbored considerably more iron (13.8 +/- 0.6) and sulfide (13.1 +/- 0.2) per polypeptide and catalyzed formation of 0.96 equiv of 5'-dA and 0.36 equiv of the lipoyl group. M?ssbauer spectroscopy of this protein revealed that only approximately 67% +/- 6% of the iron is in the form of [4Fe-4S](2+) clusters, amounting to 9.2 +/- 0.4 irons and 8.8 +/- 0.1 sulfides or 2 [4Fe-4S](2+) clusters per polypeptide, with the remainder of the iron occurring as adventitiously bound species. Although the M?ssbauer parameters of the clusters associated with each of the variants are similar, EPR spectra of the reduced forms of the cluster show small differences in spin concentration and g-values, consistent with each of these clusters as distinct species residing in each of the two cysteine-containing motifs.  相似文献   

9.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

10.
The terminal enzyme of heme biosynthesis, ferrochelatase (EC 4.99.1.1), catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme. Prior to the present work, [2Fe-2S] clusters have been identified and characterized in animal ferrochelatases but not in plant or prokaryotic ferrochelatases. Herein we present evidence that ferrochelatases from the bacteria Caulobacter crescentus and Mycobacterium tuberculosis possess [2Fe-2S] clusters. The enzyme from C. crescentus is a homodimeric, membrane-associated protein while the enzyme from M. tuberculosis is monomeric and soluble. The clusters of the C. crescentus and M. tuberculosis ferrochelatases are ligated by four cysteines but possess ligand spacings that are unlike those of any previously characterized [2Fe-2S] cluster-containing protein, including the ferrochelatase of the yeast Schizosaccharomyces pombe. Thus, the microbial ferrochelatases represent a new group of [2Fe-2S] cluster-containing proteins.  相似文献   

11.
The ferredoxin from Clostridium pasteurianum, which contains two [4Fe-4S] clusters, was investigated in its oxidized and reduced states by two-dimensional (2D) (1)H-(1)H nuclear Overhauser enhancement spectroscopy (NOESY). Comparison of the data from the oxidized ferredoxin with those published previously revealed the same NOE connectivities. No previous (1)H-(1)H NOESY study of the fully reduced ferredoxin has previously been published. However, it was possible to compare our results with those of a 2D exchange spectroscopy investigation of half-reduced C. pasteurianum ferredoxin. The present results with reduced C. pasteurianum ferredoxin confirm many of the (1)H peaks and NOE interactions reported earlier, revise others, and locate resonances previously undetected. When the ferredoxin was slightly exposed to oxygen, several of the hyperfine shifted resonances were irreversibly influenced. A resonance at 34 ppm in the (1)H NMR spectra of both redox states is indicative of oxygen exposure. These results indicate the importance of keeping the ferredoxin strictly anaerobic during purification and solvent exchange.  相似文献   

12.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

13.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

14.
The Bacillus subtilis redox regulator Fnr controls genes of the anaerobic metabolism in response to low oxygen tension. An unusual structure for the oxygen-sensing [4Fe-4S](2+) cluster was detected by a combination of genetic experiments with UV-visible and M?ssbauer spectroscopy. Asp-141 was identified as the fourth iron-sulfur cluster ligand besides three Cys residues. Exchange of Asp-141 with Ala abolished functional in vivo complementation of an fnr knock-out strain by the mutagenized fnr gene and in vitro DNA binding of the recombinant regulator FnrD141A. In contrast, substitution of Asp-141 with Cys preserved [4Fe-4S](2+) structure and regulator function.  相似文献   

15.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

16.
Recently the involvement of one or, more likely, two nitrogen-ligands in the Rieske-type [2Fe-2S] cluster has been reported based on the chemical assay and various spectroscopic analyses, such as EPR, M?ssbauer, ENDOR, and resonance Raman, of isolated Thermus thermophilus HB-8 protein by Fee and his collaborators. Similarly, the presence of at least one nitrogen ligand was shown in the mitochondrial Rieske [2Fe-2S] cluster. We have conducted EXAFS studies of the Rieske [2Fe-2S] protein isolated from the cytochrome bc1 complex of bovine heart mitochondria. Standard analysis could not distinguish one or two nitrogen ligands per cluster. However, one nitrogen and three cysteine ligands per cluster was found to be, possibly, a better solution in more comprehensive analysis procedures.  相似文献   

17.
Hinckley GT  Frey PA 《Biochemistry》2006,45(10):3219-3225
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of l-lysine and l-beta-lysine by a free radical mechanism. The 5'-deoxyadenosyl radical derived from the reductive cleavage of S-adenosyl-l-methionine (SAM) initiates substrate-radical formation. The [4Fe-4S](1+) cluster in LAM is the one-electron source in the reductive cleavage of SAM, which is directly ligated to the unique iron site in the cluster. We here report the midpoint reduction potentials of the [4Fe-4S](2+/1+) couple in the presence of SAM, S-adenosyl-l-homocysteine (SAH), or 5'-{N-[(3S)-3-aminocarboxypropyl]-N-methylamino}-5'-deoxyadenosine (azaSAM) as measured by spectroelectrochemistry. The reduction potentials are -430 +/- 2 mV in the presence of SAM, -460 +/- 3 mV in the presence of SAH, and -497 +/- 10 mV in the presence of azaSAM. In the absence of SAM or an analogue and the presence of dithiothreitol, dihydrolipoate, or cysteine as ligands to the unique iron, the midpoint potentials are -479 +/- 5, -516 +/- 5, and -484 +/- 3 mV, respectively. LAM is a member of the radical SAM superfamily of enzymes, in which the CxxxCxxC motif donates three thiolate ligands to iron in the [4Fe-4S] cluster and SAM donates the alpha-amino and alpha-carboxylate groups of the methionyl moiety as ligands to the fourth iron. The results show the reduction potentials in the midrange for ferredoxin-like [4Fe-4S] clusters. They show that SAM elevates the reduction potential by 86 mV relative to that of dihydrolipoate as the cluster ligand. This difference accounts for the SAM-dependent reduction of the [4Fe-4S](2+) cluster by dithionite reported earlier. Analogues of SAM have a weakened capacity to raise the potential. We conclude that the midpoint reduction potential of the cluster ligated to SAM is 1.2 V less negative than the half-wave potential for the one-electron reductive cleavage of simple alkylsulfonium ions in aqueous solution. The energetic barrier in the reductive cleavage of SAM may be overcome through the use of binding energy.  相似文献   

18.
19.
5'-[N-[(3S)-3-Amino-carboxypropyl]-N-methylamino]-5(')-deoxyadenosine (azaSAM), an analog of S-adenosyl-L-methionine (SAM), was used to study the cofactor-dependent reduction of the [4Fe-4S](2+) center in lysine 2,3-aminomutase to the +1 oxidation state. azaSAM has a tertiary nitrogen in place of the sulfonium center of SAM. The analog binds to lysine 2,3-aminomutase with K(d)s of 1.4+/-0.3 microM at pH 8.0 and 2.2+/-0.6 microM at pH 6.5. Reduction of the [4Fe-4S](2+) center in the presence of this analog gives a 10K [4Fe-4S](1+) electron paramagnetic resonance (EPR) signal similar to that seen with SAM or S-adenosyl-L-homocysteine (SAH). The pH dependence of cofactor-induced reduction was examined to determine whether ionization of the tertiary nitrogen (pK(a)=7.08) might affect reduction of the [4Fe-4S](2+) center. The results show similar behavior in azaSAM and SAH, demonstrating that ionization of the aza group in azaSAM does not account for pH dependence in cofactor-dependent reduction of the [4Fe-4S](2+) center. The signal shape of the low-temperature EPR signal for the [4Fe-4S](1+) center in the SAM-induced reduction displayed a pH dependence that was not observed in the azaSAM- or SAH-induced spectra. Unique features of the signal are at a maximum at the pH activity optimum of pH 8 and are diminished as the pH is lowered or raised. These features are also absent in the spectra at all pHs examined when reduction is induced by azaSAM or SAH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号