首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilatometric measurements were made to determine the change in apparent specific volume φ of DNA resulting from thermal denaturation in neutral solution, φ increased continuously with temperature in the range 10–85°C. No deviations from a monotonically rising curve were observed in the φ versus temperature profile in the region of the melting temperature. The results are interpreted in terms of a partial loss of the preferentially bound DNA hydration shell. The nature of the well known buoyant density difference between native and denatured DNA was investigated by evaluating the densities in a series of cesium salt gradients at constant temperature. Extrapolation of the results to zero water activity indicates that the partial specific volumes of anhydrous native and denatured DNA are equal. The density difference at nonzero water activities is attributed to decreased hydration in the denatured state. The absence of a related change in φ accompanying the denaturation in the dilatometric experiments suggests that the probable volume change associated with loss of bound water during denaturation is accompanied by other compensatory volume effects. The possible nature of these volume effects is discussed.  相似文献   

2.
Temperature dependence of heat capacity of native and denatured collagen samples with different content of bound water (6 divided by 27%) has been studied by DSC method in the temperature range from -50 to 150 degrees C. Heat capacity of denatured samples demonstrates a jump of 0.50 J/g.grad. at temperature Tg, which depends on humidity of the sample. It has been shown that Tg value also depends on the heating rate and thermal history. Annealing at the temperature below Tg produces an additional maximum in the temperature dependence on heat capacity. The magnitude of this maximum, as well as the Tg value increase with the annealing time. It is concluded that these properties of heat capacity reflect glass transition in the denatured collagen.  相似文献   

3.
Absolute values of heat capacity for some hydrated globular proteins have been studied by differential scanning calorimetry (DSC) method. It has been found that for the proteins with completely bound water, like in the case of protein solutions, the value of heat capacity of denatured proteins is higher than that prior to denaturation. Depending on temperature and humidity the denatured proteins can be either in high elastic or glass state. Specific heat capacities for these two states have the same values for all proteins and depend only on temperature with a characteristic increment of 0.55 J/g.K. at glass transition. The glass transitions were observed not only in denatured but also in native proteins. As it follows from our results, the main contribution to the heat capacity increment at denaturation is connected with the thermal motion in the protein globule which is in contrast with the commonly accepted ideas.  相似文献   

4.
In contrast to proteins, many nucleic acids can undergo reversible modification of their conformations, and this flexibility can be used to facilitate purification. Selective renaturation with capture is a novel method of removing contaminating genomic DNA from plasmid samples. Plasmid DNA quickly renatures after thermal denaturation and cooling (or alkaline denaturation followed by neutralization), whereas genomic DNA remains locally denatured after rapid cooling in mismatch-stabilizing high ionic strength buffer. Partially denatured genomic DNA can be selectively bound to a metal chelate affinity adsorbent through exposed purine bases, while double-stranded renatured plasmid DNA is not bound. Using this method we have readily achieved 1,000,000-fold clearance of 71 wt % contaminating E. coli genomic DNA from plasmid samples.  相似文献   

5.
The kinetics of renaturation of heat- or formamide-denatured DNA have been studied by following the change of optical density at a constant temperature. Solvents of different ionic strength and various DNA samples have been used. At the lower ionic strengths studied, the reaction follows second-order kinetics, substantiating the hypothesis that strands of native DNA separate upon denaturation and recombine during renaturation. As the ionic strength is increased at a constant temperature, the reaction deviates from simple second-order behavior. This appears to be the result of the inhibition to rewinding caused by short helical segments in the denatured DNA which are more stable at the higher ionic strenth.  相似文献   

6.
The temperature trends of the standard thermodynamic functions of the native and denatured protein in solution are considered within the concept of excess mixing functions. It is assumed that some protein molecules adopt an intermediate state between native and denatured forms within the temperature range between cold and thermal denaturation and form metastable microphases as a result of a specific interaction with water. A phase diagram in the temperature–standard entropy coordinate plane representing an isobar family is proposed. Two limiting isobars are characterized by an entropy jump, which reflects the first-order phase transition between the native and denatured states. The isobars in the intermediate temperature range are represented as van der Waals curves, which reflect the equilibrium between the main phase of the molecules in native state and microphases. The difference between the phases disappears at critical points. It is assumed that the supercritical range is a macroscopically homogeneous single phase zone of reduced stability, which is represented by a dynamic system of monomers and oligomers of the native protein, monomers and clusters of the protein with partially unfolded structure. The phase diagram is collated with the elliptic phase diagram in the temperature–osmotic pressure plane.  相似文献   

7.
Calorimetric measurements of absolute heat capacity have been performed for hydrated (11)S-globulin (0 < C(H(2)O) < 25%) and for lysozyme in a concentrated solution, both in the native and denatured states. The denaturation process is observed in hydrated and completely anhydrous proteins; it is accompanied by the appearance of heat capacity increment (Delta(N)(D)C(p)), as is the case for protein solutions. It has been shown that, depending on the temperature and water content, the hydrated denatured proteins can be in a highly elastic or glassy states. Glass transition is also observed in hydrated native proteins. It is found that the denaturation increment Delta(N)(D)C(p) in native protein, like the increment DeltaC(p) in denatured protein in glass transition at low water contents, is due to additional degrees of freedom of thermal motion in the protein globule. In contrast to the conventional notion, comparison of absolute C(p) values for hydrated denatured proteins with the C(p) values for denatured proteins in solution has indicated a dominant contribution of the globule thermal motion to the denaturation increment of protein heat capacity in solutions. The concentration dependence of denaturing heat absorption (temperature at its maximum, T(D), and thermal effect, DeltaQ(D)) and that of glass transition temperature, T(g), for (11)S-globulin have been studied in a wide range of water contents. General polymeric and specific protein features of these dependencies are discussed.  相似文献   

8.
Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.  相似文献   

9.
The thermal denaturation of endo-beta-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus was studied by calorimetry. The calorimetric profile revealed two transitions at 109 and 144 degrees C, corresponding to protein denaturation and complete unfolding, respectively, as shown by circular dichroism and fluorescence spectroscopy data. Calorimetric studies also showed that the denatured state did not refold to the native state unless the cooling temperature rate was very slow. Furthermore, previously denatured protein samples gave well-resolved denaturation transition peaks and showed enzymatic activity after 3 and 9 months of storage, indicating slow refolding to the native conformation over time.  相似文献   

10.
The change of infectivity of phage DNAs after heat and alkali denaturation (and renaturation) was measured. T7 phage DNA infectivity increased 4- to 20-fold after denaturation and decreased to the native level after renaturation. Both the heavy and the light single strand of T7 phage DNA were about five times as infective as native T7 DNA. T4 and P22 phage DNA infectivity increased 4- to 20-fold after denaturation and increased another 10- to 20-fold after renaturation. These data, combined with other authors' results on the relative infectivity of various forms of phiX174 and lambda DNAs give the following consistent pattern of relative infectivity. Covalently closed circular double-stranded DNA, nicked circular double-stranded DNA, and double-stranded DNA with cohesive ends are all equally infective and also most highly infectious for Escherichia coli lysozyme-EDTA spheroplasts; linear or circular single-stranded DNAs are about 1/5 to 1/20 as infective; double-stranded DNAs are only 1/100 as infective. Two exceptions to this pattern were noted: lambda phage DNA lost more than 99% of its infectivity after alkaline denaturation; this infectivity could be fully recovered after renaturation. This behavior can be explained by the special role of the cohesive ends of the phage DNA. T5 phage DNA sometimes showed a transient increase in infectivity at temperatures below the completion of the hyperchròmic shift; at higher temperatures, the infectivity was completely destroyed. T5 DNA denatured in alkali lost more than 99.9% of its infectivity; upon renaturation, infectivity was sometimes recovered. This behavior is interpreted in terms of the model of T5 phage DNA structure proposed by Bujard (1969). The results of the denaturation and renaturation experiments show higher efficiencies of transfection for the following phage DNAs (free of single-strand breaks): T4 renatured DNA at 10(-3) instead of 10(-5) for native DNA; renatured P22 DNA at 3 x 10(-7) instead of 3 x 10(-9) for native DNA; and denatured T7 DNA at 3 x 10(-6) instead of 3 x 10(-7) for native DNA.  相似文献   

11.
Renaturation of DNA in the presence of ethidium bromide   总被引:1,自引:0,他引:1  
J R Hutton  J G Wetmur 《Biopolymers》1972,11(11):2337-2348
The rate of renaturation of T2 DNA has been studied as a fuction of ethidium bound per nucleotide of denatured DNA. The Binding constants and number of binding sites for ethidium have been determined by spectral titration for denatured DNA at 55, 65, and 75°C and for native DNA at 65°C in 0.4M Na+. The rate of renaturation of T2 DNA was found to be independentof ethidium binding up to 0.03 moles per mole of nucleotide. Above 0.03 moles, the rate drops off precipitously approaching zero at 0.08 and 0.06 moles bound ethidium per nucleotide at 65°C respectively. A study was also made of the use of bound ethidium fluorescence as a probe for monitoring DNA renaturation reactions.  相似文献   

12.
Temperature dependence of spin-spin proton relaxation times of DNA and bound water and the content of bound water in the samples of DNA, saturated with water in the atmosphere with different relative humidities from 0 to 100% were studied by means of pulsed NMR. It is shown that the temperature transition in the system of DNA-bound water in the interval 18-35 degrees is observed only when the relative humidity is more than 70% and the double-stranded structure of DNA exists. The transition of DNA from one conformation into another passes through some intermediate state more labile and probably less ordered. This transition is accompanied by changes in the structure of the hydration shell. In the case when relative humidity is greater than 80%, the partial dehydration of DNA stimulated by the transition is observed. This dehydration increases with the increase of relative humidity.  相似文献   

13.
Differential scanning calorimetry (DSC) was used to study the thermal stability of native and synthetically cross-linked rat-tail tendon at different levels of hydration, and the results compared with native rat-tail tendon. Three cross-linking agents of different length between functional groups were used: malondialdehyde (MDA), glutaraldehyde and hexamethylene diisocyanate (HMDC). Each yielded the same linear relation between the reciprocal of the denaturation temperature in Kelvin, T(max), and the water volume fraction, epsilon (1/T(max)=0.000731epsilon+0.002451) up to a critical hydration level, the volume fraction of water in the fully hydrated fibre. Thereafter, water was in excess, T(max) was constant and the fibre remained unchanged, no matter how much excess water was added. This T(max) value and the corresponding intrafibrillar volume fraction of water were as follows: 84.1 degrees C and 0.48 for glutaraldehyde treated fibres, 74.1 degrees C and 0.59 for HMDC treated fibres, 69.3 degrees C and 0.64 for MDA treated fibres, and 65.1 degrees C and 0.69 for untreated native fibres. Borohydride reduction of the native enzymic aldimines did not increase the denaturation temperature of the fibres. As all samples yielded the same temperature at the same hydration, the temperature could not be affected by the nature of the cross-link other than through its effect on hydration. Cross-linking therefore caused dehydration of the fibres by drawing the collagen molecules closer together and it was the reduced hydration that caused the increased temperature stability. The cross-linking studied here only reduced the quantity of water between the molecules and did not affect the water in intimate contact with, or bound to, the molecule itself. The enthalpy of denaturation was therefore unaffected by cross-linking. Thus, the "polymer-in-a-box" mechanism of stabilization, previously proposed to explain the effect of dehydration on the thermal properties of native tendon, explained the new data also. In this mechanism, the configurational entropy of the unfolding molecule is reduced by its confinement in the fibre lattice, which shrinks on cross-linking.  相似文献   

14.
The renaturation kinetics of mitochondrial DNA from the yeast Saccharomyces carlsbergensis have been studied at different temperatures and molecular weights. At renaturation temperatures 25 deg. C below the mean denaturation temperature (Tm) in 1 M-sodium chloride the renaturation rate constant is found to decrease with increasing molecular weight of the reacting strands. This unusual molecular weight dependency gradually disappears with an increase in the renaturation temperature. At a temperature 10 deg. C below the melting point, the rate constant shows the normally expected increase with the square root of the molecular weight. From the renaturation data at this temperature, the molecular weight of the mitochondrial genome is estimated to be about 5·0 × 107. The same size of genome was found from renaturation at low molecular weight and 25 deg. C below the Tm.The sedimentation properties of denatured mitochondrial DNA at pH values 7·0 to 12·5 were used to study the conformation of this DNA in 1 M-sodium chloride. The results obtained support the conclusion from the renaturation studies: that the pieces of denatured mitochondrial DNA with a molecular weight above 2 × 105 to 3 × 105, in 1 M-sodium chloride at 25 deg. C below the mean denaturation temperature are not fully extended random coils. Presumably, interaction between adenine and thymine-rich sequences, which are clustered at certain distances within the molecules, is the molecular basis for these observations.  相似文献   

15.
Almost diploid nuclei (as judged from the microdensitometric evaluation of the Feulgen positive material) of granular and Purkinje cells of the rat cerebellar cortex, were submitted to in situ DNA denaturation and renaturation experiments. We assessed the double-strandedness of DNA, by Methyl Green staining according to Scott (1967). Under these conditions a stoichiometric ratio between bound dye and DNA exists, suitable for quantitative microdensitometric measurements. Our data show that DNA in the interphasic chromatin is never completely denatured after the treatments we used. Furthermore, the renaturation takes place in a different way in the two cell types. Owing to the unlike chromatin packing of granular and Purkinje nuclei, we suggest that nuclear proteins must interfere differently on the in situ denaturation and renaturation processes.  相似文献   

16.
The effects of temperature and ethidium bromide on the banding of heat-denatured DNA was studied during equilibrium centrifugation in density gradients of NaI. Centrifugation at 10 degrees C prevents the partial renaturation of Escherichia coli DNA and Clostridium perfringens DNA that occurs at 20 degrees C. A centrifugation temperature of --5 degrees C is required to prevent renaturation of T7 phage DNA. Ethidium bromide decreases renaturation of Escherichia coli DNA during centrifugation at 20 degrees C and causes a small shift in the buoyant density of both denatured and native DNA. Equilibrium centrifugation at lower temperatures prevents DNA renaturation and permits increased utilization of the large buoyant density difference between native and heat-denatured DNA in gradients of NaI.  相似文献   

17.
When intracellular lambda replicative intermediates (theta structures) are intercalated with psoralen and then irradiated with long wavelength ultraviolet light (u.v.), interstrand crosslinks are produced. After purification and denaturation of these theta structures, a global difference in denaturation can be observed by electron microscopy; parental sections are essentially native whereas daughter segments are highly denatured. This difference can be explained if parental sections are covalently continuous (and therefore able to supercoil) and daughter segments are not. Due to the higher thermal stability of supercoiled DNA, parental DNA will remain native while daughter sections will denature. Because these structures are crosslinked, the thermal treatment does not lead to dissociation of the highly denatured daughter strands. Experiments with simple negatively supercoiled plasmid circles support the above conclusions. When circles are crosslinked with psoralen-u.v. and then denatured, they remain native because of the higher thermal stability of covalently closed structures. If the circles are linearized before heating but after the psoralen-u.v. treatment, the thermal stability effect is eliminated and the molecules become highly denatured. In this case, however, the crosslinking density is found to be higher than in samples linearized before psoralen-u.v. treatment. This, therefore, shows that crosslinking density also reflects the superhelical state of the molecule at the time of psoralen-u.v. treatment. Two different properties can be used to discriminate between supercoiled and covalently discontinuous domains in complex DNA structures. First, supercoiled regions remain native while covalently discontinuous segments denature following a thermal treatment. This effect requires that covalent continuity exists up to and during the heating treatment. Second, because negative superhelicity enhances psoralen intercalation, crosslinking density is higher in these regions. Even if supercoiled domains are destroyed after the psoralen-u.v. treatment, the imprint of superhelicity is retained and can be recognized as a higher than normal crosslinking density.  相似文献   

18.
The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.  相似文献   

19.
Thermal denaturation of Euphorbia latex amine oxidase (ELAO) has been studied by enzymatic activity, circular dichroism and differential scanning calorimetry. Thermal denaturation of ELAO is shown to be an irreversible process. Checking the validity of two-state it really describes satisfactorily the thermal denaturation of ELAO. Based on this model we obtain the activation energy, parameter T(*) (the absolute temperature at which the rate constant of denaturation is equal to 1 min(-1)), and total enthalpy of ELAO denaturation. HPLC experiments show that the thermal denatured enzyme conserves its dimeric state. The N(2)-->kD(2) model for thermal denaturation of ELAO is proposed: where N(2) and D(2) are the native and denatured dimer, respectively.  相似文献   

20.
Transfer of native or denatured DNA from gels or filter manifolds was compared using nylon or nitrocellulose membranes. The results were comparable when denatured DNA was used, but only nylon membranes were able to retain native DNA. Although retention of the native DNA was less efficient the bound DNA could be rapidly denatured in situ, avoiding the need to soak gels in alkaline denaturation solution and neutralizing buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号