首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Despite considerable efficacy of arsenic trioxide (As2O3) in acute promyelocytic leukemia (APL) treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML), are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.  相似文献   

4.
In order to overcome chemotherapy resistance, many laboratories are searching for agents that increase the sensitivity of cancer cells to anticancer drugs. Arsenic trioxide (As2O3) is widely used in treating human acute polymyelocytic leukemia (APL). However, solid tumors and other leukemia cells such as U937 promonocytic leukemia cells are insensitive to As2O3. Esculetin, a coumarin derivative, has previously induced cell cycle arrest and apoptosis of HL-60 cells as well as enhanced taxol-induced apoptosis in HepG2 cells, thereby displaying anticancer potential. In this study, esculetin inhibited proliferation and mitogen activated protein kinases (MAPKs) activation in human leukemia U937 cells. Since inhibitors of MAPKs have modulated the GSH-redox state and enhanced the sensitivity of leukemia cells to As2O3-provoked apoptosis, we monitored the effect of combining esculetin and As2O3 (2.5 μM) on the GSH level. Our study showed that esculetin, PD98059 (MEK/ERK inhibitor), and SP600125 (JNK inhibitor) similarly enhanced the As2O3-induced GSH depletion. We found that the As2O3 (2.5 μM) treatment slightly induced apoptosis and the pretreatment of esculetin enhanced the As2O3-provoked apoptosis significantly. In addition, esculetin enhanced the effect of As2O3 on caspase activation in U937 cells. We compared the combined esculetin and As2O3 treatment to the As2O3 treated alone. The combined esculetin and As2O3 treatment increased Bid cleavage, Bax conformation change and cytochrome C release. The study also indicated that esculetin enhanced the As2O3-induced lysosomal leakage and apoptosis. Furthermore, pretreatment with N-acetylcysteine (NAC) reduced these enhanced effects. Based on these studies, esculetin enhances the As2O3-provoked apoptosis by modulating the MEK/ERK and JNK pathways and reducing intracellular GSH levels. GSH depletion led to higher oxidative stress which activated lysosomal-mitochondrial pathway of apoptosis.  相似文献   

5.
6.
Two myelodysplastic syndrome (MDS) celllines, MUTZ-1 and SKM-1 cells, were used to study the effect of arsenic trioxide (As2O3) on hematological malignant cells. As2O3 induced this two cell lines apoptosis via activation of caspase-3/8 and cleavage of poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme. As2O3 reduced NF-κB activity, which was important for inducing MUTZ-1 and SKM-1 cells apoptosis. As2O3 also inhibited the activities of hTERT in MUTZ-1 and SKM-1 cells. Moreover, the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), had no effect on caspase-8 activation, although PDTC did inhibit MUTZ-1 and SKM-1 cells proliferation. Incubation of MUTZ-1 cells with a caspase-8 inhibitor failed to block As2O3-induced inhibition of NF-κB activity. Our findings suggest that As2O3 may induce apoptosis in MUTZ-1 and SKM-1 cells by two independent pathways: first, by activation of caspase-3/8 and PARP; and second, by inhibition of NF-κB activity, which results in downregulation of hTERT expression. We conclude that hTERT and NF-κB are important molecular targets in As2O3-induced apoptosis.  相似文献   

7.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

8.
Background: Hydrogen peroxide, as other reactive oxygen species (ROS) produced during redox processes, induces lipid membrane peroxidation and protein degeneration causing cell apoptosis. ROS are recently considered as messengers in cell signalling processes, which, through reversible protein disulphide bridges formation, activate regulatory factors of cell proliferation and apoptosis. Disulphide bridges formation is catalysed by sulphydryl oxidase enzymes.

Aim: The neuroprotective effect of ALR protein (Alrp), a sulphydryl oxidase enzyme, on H2O2-induced apoptosis in SH-SY5Y cells has been evaluated.

Methods: Cell viability, flow cytometric evaluation of apoptotic cells, fluorescent changes of nuclear morphology, immunocytochemistry Alrp detection, Western blot evaluation of mitochondrial cyt c release and mitochondrial swelling were determined.

Results: Alrp prevents the H2O2-induced cell viability loss, apoptotic cell death and mitochondrial swelling in SH-SY5Y cells in culture.

Conclusions: The data demonstrate that Alrp improves SH-SY5Y cells survival in H2O2-induced apoptosis. It is speculated that this effect could be related to the Alrp enzymatic activity.  相似文献   

9.
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.  相似文献   

10.
11.
《Free radical research》2013,47(6-7):526-534
Abstract

Although endothelial progenitor cells (EPCs) have been used to promote revascularization after peripheral or myocardial ischemia, excess amounts of reactive oxygen species (ROS) are often involved in senescence and apoptosis of EPCs, thereby causing defective neovascularization and reduced or failed recovery. Here, we examined the cytoprotective effect of Ecklonia cava-derived antioxidant dieckol (DK) on oxidative stress-induced apoptosis in EPCs to improve EPC bioactivity for vessel repair. Although H2O2 (10 ? 3 M) increased the intracellular ROS level in EPCs, DK (10ug/ml) pretreatment suppressed the H2O2-induced ROS increase and drastically reduced the ratios of apoptotic cells. H2O2-induced ROS increased the phosphorylation of p38 MAPK and JNK; this was inhibited by DK pretreatment. H2O2 treatment increased the phosphorylation of NF-κB, which was blocked by pretreatment with SB 203580, a p38 MAPK inhibitor, or SP 600125, a JNK inhibitor. H2O2 decreased the cellular levels of Bcl-2 and c-IAPs, cellular inhibitors of apoptosis proteins, but increased caspase-3 activation. However, all these effects were inhibited by pretreatment with DK. Injection of DK-mixed EPCs (DK + EPCs) into myocardial ischemic sites in vivo induced cellular proliferation and survival of cells at the ischemic sites and, thereby, enhanced the secretion of angiogenic cytokines at the ischemic sites. These results show that DK + EPC exhibit markedly enhanced anti-apoptotic and antioxidative capabilities, unlike that shown by EPCs alone; thus, they contribute to improved repair of ischemic myocardial injury through cell survival and angiogenic cytokine production.  相似文献   

12.
Cardiotoxicity is an aggravating side effect of many clinical antineoplastic agents such as arsenic trioxide (As2O3), which is the first-line treatment for acute promyelocytic leukemia (APL). Clinically, drug combination strategies are widely applied for complex disease management. Here, an optimized, cardiac-friendly therapeutic strategy for APL was investigated using a combination of As2O3 and genistein or resveratrol. Potential combinations were explored with respect to their effects on mitochondrial membrane potential, reactive oxygen species, superoxide dismutase activity, autophagy, and apoptosis in both NB4 cells and neonatal rat left ventricular myocytes. All experiments consistently suggested that 5 µM resveratrol remarkably alleviates As2O3-induced cardiotoxicity. To achieve an equivalent effect, a 10-fold dosage of genistein was required, thus highlighting the dose advantage of resveratrol, as poor bioavailability is a common concern for its clinical application. Co-administration of resveratrol substantially amplified the anticancer effect of As2O3 in NB4 cells. Furthermore, resveratrol exacerbated oxidative stress, mitochondrial damage, and apoptosis, thereby reflecting its full range of synergism with As2O3. Addition of 5 µM resveratrol to the single drug formula of As2O3 also further increased the expression of LC3, a marker of cellular autophagy activity, indicating an involvement of autophagy-mediated tumor cell death in the synergistic action. Our results suggest a possible application of an As2O3 and resveratrol combination to treat APL in order to achieve superior therapeutics effects and prevent cardiotoxicity.  相似文献   

13.
The permeability transition pore (PTP) is central for apoptosis by acting as a good candidate pathway for the release of Cyt. c and apoptosis induction factors (AIF). Arsenite induces apoptosis via a direct effect on PTP. To characterize the exact mechanism for arsenite induces PTP opening, the effect of Ca2+ on As2O3-induced PTP opening, the relationship between As2O3-induced PTP opening and Cyt. c release from mitochondria and calcium-induced calcium release from mitochondria (mCICR), and the effects of As2O3 on Ca2+-induced PTP opening were studied. The results showed As2O3 induces Cyt. c release by triggering PTP opening. Ca2+ is necessary for As2O3-induced PTP opening. As2O3-induced PTP opening and Cyt. c release depends on mCICR. As2O3 promotes PTP opening by lowering Ca2+-threshold. These results indicated As2O3 induce Cyt. c release from mitochondria by lowering Ca2+-threshold for PTP and triggering mCICR-dependent PTP opening. Suggesting that it is possible to control apoptosis by altering Ca2+ threshold and mCICR to modulate PTP opening and Cyt. c release.  相似文献   

14.
Arsenic trioxide (As2O3) is an effective treatment for relapsed or refractory acute promyelocytic leukemia (APL). After the discovery of As2O3 as a promising treatment for APL, several studies investigated the use of As2O3 as a single agent in the treatment of solid tumors; however, its therapeutic efficacy is limited. Thus, the systematic study of the combination of As2O3 with other clinically used chemotherapeutic drugs to improve its therapeutic efficacy in treating human solid tumors is merited. In this study, we demonstrate for the first time, using isobologram analysis, that As2O3 exhibits a synergistic interaction with N,N′-bis(2-chloroethyl)-N-nitrosourea (BCNU). The synergistic augmentation of the cytotoxicity of As2O3 with BCNU is in part through the autophagic cell death machinery in human solid tumor cells. As2O3 and BCNU in combination produce enhanced cytotoxicity via the depletion of reduced glutathione (GSH) and augmentation of reaction oxygen species (ROS) production. Further analysis indicated that the extension of GSH depletion by this combined regimen occurs through the inhibition of the catalytic activity of glutathione reductase. Blocking ROS production with antioxidants or ROS scavengers effectively inhibits cell death and autophagy formation, indicating that redox-mediated autophagic cell death involves the synergism of As2O3 with BCNU. Taken together, this is the first evidence that BCNU could help to extend the therapeutic spectrum of As2O3. These findings will be useful in designing future clinical trials of combination chemotherapy with As2O3 and BCNU, with the potential for broad use against a variety of solid tumors.  相似文献   

15.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

16.
Given that arsenic trioxide (As2O3) has been successfully used as a chemotherapeutic agent for refractory malignant tumors, this study is aimed at investigating the effect of As2O3 on human Adriamycin resistant osteosarcoma cell line Saos-2. The mechanism underlying multi drug resistance (MDR) in osteosarcoma cells and the anti-tumor effect of As2O3 on Adriamycin resistant osteosarcoma cells were analyzed. In our experiment, we first selected Adriamycin resistant osteosarcoma cell line by growing the classic osteosarcoma cell line Saos-2 in the medium with increasing drug concentrations. Then, we compared the IC50s of the osteosarcoma cells treated with different anticancer drugs by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Subsequently, we assessed the expression of classic MDR related molecules, Pgp, multidrug resistance-associated protein (MRP) and glutathione (GSH) activity in the wild type and Adriamycin resistant Saos-2 cells. Furthermore, the apoptosis was assessed by concerning DNA fragment and flow cytometry with Annexin-V staining. To elucidate the underlying mechanism of the apoptosis, related proteins Bcl-2, Bcl-xL, Bax, Bak, cleaved Caspase-3 and cleaved Caspase-9 were analyzed by western blotting. The data showed that the resistance to Adriamycin affected the sensitivity of osteosarcoma cell to other chemotherapeutic agents. The IC50s of Saos-2/ADM cells for methotrexate (1.74-fold), Cisplatin (1.43-fold) and As2O3 (1.21-fold) were increased compared with Saos-2 control cells. The expression of Pgp was upregulated comparing with the control cells. No significant difference was detected about the MRP and the glutathione-S-transferase activity and intracellular GSH concentration among different treated osteosarcoma cells. Apoptosis was observed and proved. The western blotting showed that the expression of Bcl-2 and Bcl-xL was downregulated. Meanwhile, the level of Bax, Bak, cleaved Caspase-3 and cleaved Caspase-9 was upregulated after treated with As2O3. The study suggests that Adriamycin resistant osteosarcoma cells have good response to As2O3-based chemotherapy in vitro, probably via the pathway of inducing apoptosis. And As2O3 might serve as an excellent alternative candidate for adjuvant chemotherapeutic agent on this incurable pediatric sarcoma.  相似文献   

17.
Malignant mesothelioma is an aggressive tumor of serosal surfaces, which is refractory to current treatment options. Arsenic trioxide (As2O3) is used clinically to treat acute promyelocytic leukemia, and also to inhibit proliferation of several solid tumors including hepatoma, esophageal, and gastric cancer in vitro. Here we found that As2O3 inhibited cell viability of a mesothelioma cell line, NCI‐H2052. As2O3 induced apoptosis of NCI‐H2052 cells, which was accompanied by activation of c‐Jun NH2‐terminal kinase (JNK)1/2, extracellular signal‐regulated kinase (ERK)1/2, and caspase‐3. zVAD‐fmk, a broad‐spectrum caspase inhibitor, inhibited As2O3‐induced apoptosis and activation of caspase‐3, but not that of JNK1/2 and ERK1/2. Small interfering RNAs (siRNAs) targeting JNK1/2 suppressed As2O3‐induced caspase‐3 activation and apoptosis, indicating that JNK1/2 regulate As2O3‐induced apoptosis though caspase cascade. Furthermore, JNK1 siRNA abrogated As2O3‐induced JNK2 phosphorylation and JNK2 siRNA abrogated As2O3‐induced JNK1 phosphorylation, suggesting that JNK1 and JNK2 interact with each other. Moreover, JNK1 siRNA, but not JNK2 siRNA, abrogated As2O3‐induced ERK1/2 phosphorylation. JNK2 siRNA together with PD98059, a specific MAPK/ERK kinase inhibitor, suppressed As2O3‐induced apoptosis more significantly than JNK2 siRNA alone. These results indicated that As2O3 induces apoptosis of NCI‐H2052 cells mainly through JNK1/2 activation, and that ERK1/2 is involved in As2O3‐induced apoptosis when JNK1/2 are inactivated. J. Cell. Physiol. 226: 762–768, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Reactive oxygen species (ROS) including hydrogen peroxide (H2O2) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H2O2 on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H2O2 applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H2O2 increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H2O2. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.  相似文献   

19.
Neurodegenerative disorders are a class of diseases that have been linked to apoptosis induced by elevated levels of reactive oxygen species (ROS). ROS activates the apoptotic cascade through mitochondrial dysfunction and damage to lipids, proteins and DNA. Recently, fruit and tea-derived polyphenols have been found to be beneficial in decreasing oxidative stress and increasing overall health. Further, polyphenols including epigallocatechin gallate (EGCG) have been reported to inhibit apoptotic signaling and increase neural cell survival. In an effort to better understand the beneficial properties associated with polyphenol consumption, the aim of this study was to explore the neuroprotective effects of EGCG, methyl gallate (MG), gallic acid (GA) and N-acetylcysteine (NAC) on H2O2-induced apoptosis in PC12 cells and elucidate potential protective mechanisms. Cell viability data demonstrates that MG and NAC pre-treatments significantly increase viability of H2O2-stressed cells, while pre-treatments with EGCG and GA exacerbates stress. Quantitation of apoptosis and mitochondrial membrane potential shows that MG pre-treatment prevents mitochondria depolarization, however does not inhibit apoptosis and is thus evidence that MG can inhibit mitochondria-mediated apoptosis. Subsequent analysis of DNA degradation and caspase activation reveals that MG inhibits activation of caspase 9 and has a partial inhibitory effect on DNA degradation. These findings confirm the involvement of both intrinsic and extrinsic apoptotic pathways in H2O2-induced apoptosis and suggest that MG may have potential therapeutic properties against mitochondria-mediated apoptosis.  相似文献   

20.
Summary While arsenic trioxide (As2O3) is an infamous carcinogen, it is also an effective chemotherapeutic agent for acute promyelocytic leukemia and some solid tumors. In human epidermoid carcinoma A431 cells, we found that As2O3 induced cell death in time- and dose-dependent manners. Similarly, dependent regulation of the p21 WAF1/CIP1 (p21) promoter, mRNA synthesis, and resultant protein expression was also observed. Additionally, transfection of a small interfering RNA of p21 could block the As2O3-induced cell growth arrest. The As2O3-induced p21 activation was attenuated by inhibitors of EGFR and MEK in a dose-dependent manner. Using a reporter assay, we demonstrated the involvement of the EGFR-Ras-Raf-ERK1/2 pathway in the promoter activation. In contrast, JNK inhibitor enhanced the As2O3-induced p21 activation, also in a dose-dependent fashion. Over-expression of a dominant negative JNK plasmid likewise also enhanced this activation. Furthermore, MEK inhibitor attenuated the anti-tumor effect of As2O3. In contrast, in combination with JNK inhibitor and As2O3 enhanced cellular cytotoxicity. Therefore, we conclude that in A431 cells the ERK1/2 and JNK pathways might differentially contribute to As2O3-induced p21 expression and then due to cellular cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号