首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of simvastatin (80 mg/kg, po. evening dose) and gemfibrozil (600 mg/kg, po twice) for 30 days produced significant decrease in the level of reduced glutathione, superoxide dismutase, catalase and increase in the level of lipid peroxidation and various serum parameters (creatine phosphokinase, lactate dehydrogenase, serum glutamate oxaloacetate transaminase, creatinine, urea and blood urea nitrogen). This suggested involvement of oxidative stress in rhabdomyolysis. Increase in the level of reduced glutathione, superoxide dismutase, catalase and decrease in the level of lipid peroxidation and serum parameters after administration of antioxidant CoQ10 (10 mg/kg.ip) proved the protective effect of CoQ10 in rhabdomyolysis.  相似文献   

2.
Lupeol, isolated from Crataeva nurvala stem bark in doses 40 and 80 mg/kg body weight, po, for 10 days, decreased the concentration of blood urea nitrogen, creatinine and lipid peroxidation and increased glutathione and catalase activities in cisplatin (5 mg/kg body weight, ip) induced nephrotoxicity in rats. The increased glutathione and catalase activities are indicative of antioxidant properties of lupeol.  相似文献   

3.
The present work was aimed at studying the effects of a subchronic lithium treatment on rat liver and kidneys, paying attention to the relationship between lithium toxicity, oxidative stress, and stress protein expression. Male rats were submitted to lithium treatment by adding 2 g of lithium carbonate/kg of food for different durations up to 1 month. This treatment led to serum concentrations ranging from 0.5 mM (day 7) to 1.34 mM (day 28) and renal insufficiency highlighted by an increase of blood creatinine and urea levels and a decrease of urea excretion. Lithium treatment was found to trigger an oxidative stress both in kidney and liver, leading to an increase of lipid peroxidation level (TBARS) and of superoxide dismutase and catalase activities. Conversely, glutathione peroxidase activity was reduced. Constitutive HSP73 (heat shock protein 73) expression was not modified by lithium treatment, whereas inducible HSP72 was down-regulated in kidney. GRP94 (glucose regulated protein 94) appeared as two isoforms of 92 and 98 kDa: the 98-kDa protein being overexpressed in kidney by lithium treatment whereas 92-kDa protein was underexpressed both in kidney and liver.  相似文献   

4.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

5.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

6.
We report the modulatory effect of coumarin (1,2-benzopyrone) on potassium bromate (KBrO(3)) mediated nephrotoxicity in Wistar rats. KBrO(3) (125 mg/kg body weight, i.p.) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content and antioxidant enzymes. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and [(3)H]-thymidine incorporation into renal DNA. Treatment of rats orally with coumarin (10 mg/kg body weight and 20 mg/kg body weight) resulted in a significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01) and antioxidant enzymes were also recovered to significant level (P < 0.001). These results show that coumarin may be used as an effective chemopreventive agent against KBrO(3)-mediated renal oxidative stress, toxicity and tumor promotion response in Wistar rats.  相似文献   

7.
Therapeutic effect of ethanolic extract of Hygrophila spinosa in gentamicin-induced nephrotoxic model of kidney injury in male Sprague-Dawley rats was studied. Rats were administered with gentamicin at a dose of 80 mg/kg intraperitoneally (ip) to induce nephrotoxicity. Kidney function was assessed by measuring serum creatinine and urea. Kidney superoxide dismutase, lipid peroxidation, catalase and reduced glutathione were also measured in control and treated rats. H. spinosa extract showed free radical scavenging activities at doses of 50 and 250 mg/kg with a predominant activity at 250 mg/kg. The ethanolic extract also caused a reduction in serum creatinine and urea levels. Histopathological studies were conducted to confirm the therapeutic action of the plant extract. The results demonstrated that the ethanolic extract of whole plant of H. spinosa evinced the therapeutic effect and inhibited gentamicin-induced proximal tubular necrosis.  相似文献   

8.
Iron nitrilotriacetate (Fe-NTA), a chief environmental pollutant, is known for its extensive toxic manifestations on renal system. In the present study, caffeic acid, one of the most frequently occurring phenolic acids in fruits, grains, and dietary supplements was evaluated for its shielding effect against the Fe-NTA-induced oxidative, inflammatory, and pathological damage in kidney. Fe-NTA was administered (9 mg Fe/kg body weight) intraperitoneally to the Wistar male rats on 20th day while caffeic acid was administered orally (20 and 40 mg/kg body weight) before administration of Fe-NTA. The intraperitoneal administration of Fe-NTA-enhanced lipid peroxidation, xanthine oxidase, and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., catalase, glutathione peroxidase, and glutathione reductase. A sharp elevation in the levels of myloperoxidase, blood urea nitrogen (BUN), and serum creatinine has also been observed. Tumor promotion markers viz., ornithine decarboxylase (ODC) and [(3)H] thymidine incorporation into renal DNA were also significantly increased. Treatment of rats orally with caffeic acid (20 and 40 mg/kg body weight) resulted in a significant decrease in xanthine oxidase (P < 0.001), lipid peroxidation (P < 0.001), γ-glutamyl transpeptidase (P < 0.01), and H(2)O(2) (P < 0.01). There was significant recovery of renal glutathione content (P < 0.001) and antioxidant enzymes (P < 0.001). There was also a reversal in the enhancement of renal ODC activity, DNA synthesis, BUN, and serum creatinine (P < 0.001). All these changes were supported by histological observations. The results indicate that caffeic acid may be beneficial in ameliorating the Fe-NTA-induced oxidative damage and tumor promotion in the kidney of rats.  相似文献   

9.
This study was conducted to investigate the beneficial role of naringin on nickel induced nephrotoxicity. Nickel (Ni) (20 mg/kg body weight (b.w.) was administered intraperitoneally (i.p.) for 20 days. Naringin was administered orally (20, 40 and 80 mg/kg b.w.) with i.p. administration of Ni. Ni administration increased the levels of serum urea, uric acid and creatinine with a significant decrease in creatinine clearance and decreased levels of urea, uric acid and creatinine in urine. The levels of lipid peroxidation markers and nickel concentration in blood and kidney were also increased. While, the activities of enzymic and non-enzymic antioxidants were decreased. Treatment with naringin attenuated the alterations in the renal and urine markers, decreasing lipid peroxidation markers, increasing the antioxidant cascade and decreasing the nickel concentration in blood and kidney. All these changes were supported by histopathological observations. These findings demonstrate that naringin exerts a protective effect against nickel toxicity.  相似文献   

10.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

11.
Khan N  Sultana S 《Life sciences》2005,77(11):1194-1210
Ferric nitrilotriacetate (Fe-NTA) is a well-known renal carcinogen. In this communication, we show the chemopreventive effect of Ficus racemosa extract against Fe-NTA-induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal lipid peroxidation, xanthine oxidase, gamma-glutamyl transpeptidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and thymidine [(3)H] incorporation into renal DNA. It also enhances DEN (N-diethylnitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors. Treatment of rats orally with F. racemosa extract (200 and 400 mg/kg body weight) resulted in significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity, DNA synthesis (P<0.001) and incidence of tumors. Renal glutathione content (P<0.01), glutathione metabolizing enzymes (P<0.001) and antioxidant enzymes were also recovered to significant level (P<0.001). Thus, our data suggests that F. racemosa extract is a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rats.  相似文献   

12.
An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses.  相似文献   

13.
BACKGROUND: Nephrotoxicity is a major complication and a dose limiting factor for cisplatin therapy. Recent evidence suggests that enhanced oxidative stress caused by oxygen-centered free radicals may contribute to the pathogenesis of cisplatin-induced acute renal failure. 6-Gingerol is claimed to be a potent antioxidant. The present study was performed to explore the renoprotective potential of 6-gingerol on cisplatin-induced oxidative stress and renal dysfunction. METHODS: 6-Gingerol in dosages of 12.5, 25, 50 mg/kg was administered 2 days before and 3 days after cisplatin administration. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, urea clearance and serum nitrite levels. Renal oxidative stress was assessed by determining renal malondialdehyde levels, reduced glutathione levels and enzymatic activities of superoxide dismutase and catalase. RESULTS: A single dose of cisplatin resulted in marked renal oxidative and nitrosative stress and significantly deranged renal functions. 6-Gingerol treatment significantly and dose-dependently restored renal functions, reduced lipid peroxidation and enhanced the levels of reduced glutathione and activities of superoxide dismutase and catalase. CONCLUSIONS: The present study demonstrates the renoprotective potential of 6-gingerol against cisplatin-induced oxidative stress and renal dysfunction in rats. Hence, 6-gingerol has a potential to be used as therapeutic adjuvant in cisplatin nephrotoxicity.  相似文献   

14.
The present study was designed to investigate the possible potential protective role of coenzymeQ10 (CoQ10; 10 mg/kg/day, ip) and/or green tea (GT; 25mg/kg/day, po) against gentamicin (GM) nephrotoxicity. Marked increase in the level of serum urea. creatinine and lipid peroxidation (LPO) content was found after administration of gentamicin (80 mg/kg/day, ip) for eight days along with significant decrease in the antioxidant enzymes, superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) as well as brush border enzymes (Na+/K+ ATPase, Mg(+2)ATPase and Ca2+ ATPase).Treatment with CoQ10 or green tea alone with GM showed significant decrease in serum urea, creatinine and tissue LPO content and significant increase in antioxidant and membrane bound enzymes. Combined treatment with CoQ10 and green tea was more effective in mitigating adverse effect of GM nephrotoxicity. The present work indicated that CoQ10 and green tea due to their antioxidant activity modified the biochemical changes occurred during gentamicin nephrotoxicity and thus had a potential protective effect.  相似文献   

15.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

16.
Endrin, a poly-halogenated cyclic hydrocarbon, induces hepatic lipid peroxidation, modulates calcium homeostasis, decreases membrane fluidity, and increases nuclear DNA damage. Little information is available on the neurotoxicity of endrin. The effects of endrin on lipid peroxidation, DNA damage, and regional distribution of catalase activity were assessed in rat brain and liver 24 h following an acute oral dose of 4.5 mg endrin/kg. Lipid peroxidation associated with whole brain mitochondria increased 2.4-fold, whereas microsomal lipid peroxidation increased 2.8-fold following endrin administration. Lipid peroxidation also increased 2.0-fold both in hepatic mitochondria and microsomes. Catalase activity decreased 24% in the hypothalamus, 23% in the cortex, 38% in the cerebellum, and 11% in the brain stem in response to endrin. A 4.3-fold increase in brain nuclear DNA-single strand breaks (SSB) was observed in endrin-treated rats. Pretreatment of rats intraperitoneally with the lazaroid U74389F (16-desmethyl tirilazad) (10 mg/kg in two doses) attenuated the biochemical consequences of endrin-induced oxidative stress. The administration of U74389F in citrate buffer (pH 3.8) provided better protection than administering the lazaroid in corn oil, decreasing endrin-induced lipid peroxidation by 50–80% and DNA-SSB by approximately 72% in liver and 85% in brain, while ameliorating the suppressed catalase activity. The data suggest an involvement of an oxidative stress in the neurotoxicity and hepatotoxicity induced by endrin, which can be attenuated by the lazaroid U74389F.  相似文献   

17.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

18.
Ferric nitrilotriacetate (Fe-NTA) is a well-established renal carcinogen. Here, we have shown that Pluchea lanceolata (PL) belonging to the family Asteraceae. PL attenuates Fe-NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. It promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) and renal DNA synthesis. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) also enhances renal lipid peroxidation (LPO), xanthine oxidase (XO) and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content (GSH), antioxidant enzymes, viz., glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase (QR). It also enhances blood urea nitrogen (BUN) and serum creatinine. Oral treatment of rats with PL extract (100 and 200 mg/kg body weight) resulted in significant decrease in lipid peroxidation (LPO), xanthine oxidase (XO), H2O2 generation, blood urea nitrogen (BUN), serum creatinine, renal ODC activity, DNA synthesis (p < 0.001) and incidence of tumors. Renal glutathione content (p < 0.01), its metabolizing enzymes (p < 0.001) and antioxidant enzymes were also recovered to significant level (p < 0.001). Thus, present study supports PL as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rat.  相似文献   

19.
Sleep deprivation for 72 h caused anxiety like behavior, weight loss, impaired locomotor activity and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep deprived mice brain. Treatment with melatonin (5 and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared to control (sleep deprived). Biochemically, melatonin treatment significantly restored depleted reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared to control (72 h sleep-deprived) animals. A combination of flumazenil (0.5 mg/kg, ip) and picrotoxin (0.5 mg/kg, ip) with lower dose of melatonin (5 mg/kg, ip) significantly antagonized the protective effect of melatonin. However, combination of muscimol (0.05 mg/kg, ip) with melatonin (5 mg/kg, ip) potentiated protective effect of melatonin as compared to their effect per se. The results suggest that melatonin may produce its protective effect by involving GABAergic system against sleep deprivation-induced anxiety like behavior and related oxidative damage.  相似文献   

20.
In the present study, the nephroprotective effect of gallic acid isolated from Peltiphyllum peltatum was examined in sodium fluoride (NaF) treated rats. Nephrotoxicity was induced by 1-week intoxication of NaF at 600 ppm through drinking water. The levels of thiobarbituric acid reactive substances, reduced glutathione as well as activities of superoxide dismutase and catalase in renal tissues homogenates were determined. The serum biochemical markers of renal injuries including creatinine, serum urea, blood urea nitrogen, uric acid levels as well as the levels of phosphate and calcium were also assessed. Intoxication with NaF caused a significant increase in the levels of thiobarbituric acid reactive substances (46 % versus to control) and reduced the glutathione concentration (47 %) and the activities of superoxide dismutase (46 %) and catalase (41 %) in renal tissues homogenates. NaF intoxication also induced significant alterations in the kidney biochemical markers increasing the levels of urea, uric acid, blood urea nitrogen, creatinine, and phosphate and decreasing the levels of calcium. Daily administration of gallic acid (20 mg/kg) for 1 week before NaF intoxication brought the antioxidant–oxidant balance similar to the NaF-untreated group. Silymarin, used a standard antioxidant agent, also showed a nephroprotective activity. We concluded that NaF caused nephrotoxicity and oxidative stress in renal tissues and daily administration of gallic acid for 1 week prior to intoxication inhibited toxicity and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号