首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine N-methyltransferase (EC 2.1.1.20) was recently identified as a major folate binding protein of rat liver cytosol (Wagner, C., and Cook, R. J. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3631-3634). Activity of the enzyme is inhibited when the natural folate ligand, 5-methyltetrahydropteroylpentaglutamate (5-CH3-H4PteGlu5), is bound. It has been suggested that glycine N-methyltransferase plays a role in regulating the availability of methyl groups in the liver. Purified transferase was phosphorylated in vitro by the catalytic subunit of cAMP-dependent protein kinase. If 5-CH3-H4PteGlu5 was first bound to the transferase, phosphorylation was inhibited. Phosphorylation of glycine N-methyltransferase in vitro increased its activity approximately 2-fold. 5-CH3-H4PteGlu5 inhibited the activity of newly phosphorylated enzyme as well as native enzyme. Freshly isolated rat hepatocytes incorporated 32P-labeled inorganic phosphate into this folate binding protein. Chemical analysis of purified enzyme showed about 0.55 mol of phosphate present per mol of glycine N-methyltransferase subunit. These results indicate that phosphorylation of glycine N-methyltransferase may provide a mechanism for modulating the activity of this enzyme and support its role in regulating the availability of methyl groups.  相似文献   

2.
The composition of folate coenzymes in romaine lettuce was studied. Lettuce extract was purified on QAE-Sephadex A-25 and folate compounds were separated into a monoglutamate fraction and a polyglutamate fraction by chromatography on Sephadex G-15. Both the mono- and poly-glutamate fractions were resolved on DEAE-cellulose. Positive identification of DEAE peaks was made by further cochromatography with high specific activity radioactive marker folate compounds and with differential microbiological assay. The distribution of folate compounds in lettuce is as follows: 32% 5-CH3-H4PteGlu; 1% 5-CHO-H4PteGlu; 3% 5-CHO-H4PteGlu4; 9% 5-CH3-H4PteGlu4; 13% 5-CHO-H4PteGlu5; and 31% 5-CH3-H4PteGlu5.  相似文献   

3.
Glycine N-methyltransferase (GNMT) regulates the ratio of S-adenosylmethionine to S-adenosylhomocysteine. It is very abundant in liver cytosol and earlier studies have shown it to be present in high concentrations in the pancreas. We have previously reported that liver GNMT is allosterically inhibited by 5-methyltetrahydrofolate pentaglutamate (5-CH3-H4PteGlu5), and proposed that this represents a metabolic control mechanism which links the de novo synthesis of methyl groups to the methylating ability of the liver. We now report that pancreatic GNMT also contains bound folate in vivo. Purified pancreatic GNMT is inhibited by reduced folate polyglutamates in vitro. The KI for the synthetic (R,S)5-CH3-H4PteGlu5 is 2.4 x 10(-7) M. The natural (S) form of 5-CH3-H4PteGlu5 is tightly bound and has a Kd of 1.3 x 10(-7) M. One mole is bound per enzyme tetramer. These studies suggest that GNMT is important in the regulation of methyl group metabolism in the pancreas as well as in the liver.  相似文献   

4.
T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  相似文献   

5.
The dependence of the high-affinity transport systems for 5-methyltetrahydrofolic acid (5-CH3-H4PteGlu) and methotrexate on sodium ions and on pH was examined in freshly isolated rat hepatocytes. Previous studies indicated that transport of these folate derivatives was sodium-dependent. Experiments to determine the Km for sodium of 5-CH3-H4PteGlu transport showed no dependence on extracellular sodium. However, uptake was sodium-dependent when hepatocytes were preincubated for 30 min in sodium-free medium, a treatment which resulted in an increase in the transmembrane pH gradient (delta pH = pH out-pH in) and a decrease in the uptake of 5-CH3-H4PteGlu. Uptake of methotrexate displayed a linear dependence on extracellular sodium ions. Uptake of 5-CH3-H4PteGlu increased linearly as the transmembrane pH gradient decreased; i.e., as the medium became more acid with respect to the cytosol. Lineweaver-Burk and Scatchard plots of 5-CH3-H4PteGlu uptake indicated an apparent Km for H+ of about 24 nM, equivalent to a pH of 7.6. Hill-plots suggested a stoichiometry of 1:1 for the interaction of protons with the 5-CH3-H4PteGlu transport system. Both the Km and Vmax for 5-CH3-H4PteGlu transport were increased at pH 5.5 compared to pH 7.4, suggesting that extracellular protons increased the number of and/or the activity of the membrane carrier. In contrast, methotrexate transport was maximal at pH 7 where the transmembrane pH gradient was zero. These results suggest the possibility that 5-CH3-H4PteGlu may be cotransported along with H+ ions in hepatocytes, although they do not rule out a 'catalytic coupling' whereby protons interact with the carrier to stimulate substrate flux without concomitant H+ transport.  相似文献   

6.
Glycine N-methyltransferase (EC 2.1.1.20) catalyzes the methylation of glycine by S-adenosylmethionine to form sarcosine and S-adenosylhomocysteine. The enzyme was previously shown to be abundant in both the liver and pancreas of the rat, to consist of four identical monomers, and to contain tightly bound folate polyglutamates in vivo. We now report that the inhibition of glycine N-methyltransferase by (6S)-5-CH(3)-H(4)PteGlu(5) is noncompetitive with regard to both S-adenosylmethionine and glycine. The enzyme exhibits strong positive cooperativity with respect to S-adenosylmethionine. Cooperativity increases with increasing concentrations of 5-CH(3)-H(4)PteGlu(5) and is greater at physiological pH than at pH 9.0, the pH optimum. Under the same conditions, cooperativity is much greater for the pancreatic form of the enzyme. The V(max) for the liver form of the enzyme is approximately twice that of the pancreatic enzyme, while K(m) values for each substrate are similar in the liver and pancreatic enzymes. For the liver enzyme, at pH 7.0 half-maximal inhibition is seen at a concentration of about 0.2 microM (6S)-5-CH(3)-H(4)PteGlu(5), while at pH 9.0 this value is increased to about 1 microM. For the liver form of the enzyme, 50% inhibition with respect to S-adenosylmethionine at pH 7.4 occurs at about 0.27 microM. The dissociation constant, K(s), obtained from binding data at pH 7.4 is 0.095. About 1 mol of (6S)-5-CH(3)-H(4)PteGlu(5) was bound per tetramer at pH 7.0, and 1.6 mol were bound at pH 9.0. The degree of binding and inhibition were closely parallel at each pH. At equal concentrations of (6R,6S)- and (6S)-5-CH(3)-H(4)PteGlu(5), the natural (6S) form was about twice as inhibitory. These studies indicate that glycine N-methyltransferase is a highly allosteric enzyme, which is consistent with its role as a regulator of methyl group metabolism in both the liver and the pancreas.  相似文献   

7.
The properties of folinate and 5-methyltetrahydrofolate (5-CH(3)-H(4)PteGlu) transport mechanism of Pediococcus cerevisiae were studied. The uptake was dependent on temperature, pH (optimum for both compounds at pH 6.0), and glucose. Iodoacetate, potassium fluoride, and sodium azide inhibited the uptake. 5-CH(3)-H(4)-PteGlu was apparently not metabolized but folinate was metabolized. Metabolism of folinate was reduced by preincubation of cells with fluorodeoxyuridine. The transport system for folinate and 5-CH(3)-H(4)PteGlu were specific for the l-isomers. Pteroylglutamate, aminopterin, and amethopterin did not interfere with the uptake. Tetrahydrofolate competed with the uptake of folinate. The transport of folinate and 5-CH(3)-H(4)PteGlu at 37 C conformed to Michaelis-Menten kinetics; apparent K(m) for both compounds was 4.0 x 10(-7)m, and the V(max) for folinate was 1.0 x 10(-10) moles per min per mg (dry weight) and for 5-CH(3)-H(4)PteGlu it was 1.6 x 10(-10) moles per min per mg (dry weight). Both compounds accumulated in the intracellular pool at a concentration about 80- to 140-fold higher than that in the external medium. Folinate inhibited competitively the uptake of 5-CH(3)-H(4)PteGlu with a K(i) of 0.4 x 10(-7)m. Unlike 5-CH(3)-H(4)PteGlu, which accumulated only at 37 C, folinate was also taken up at 0 C by a glucose- and temperature-independent process, which was not affected by the metabolic inhibitors mentioned above. Since at 0 C the intracellular concentration of folinate was also considerably higher than the external, binding of the substrate to some cellular component is assumed. The finding of an efficient transport system for l-5-CH(3)-H(4)PteGlu is of special interest, since this compound has no growth-promoting activity for P. cerevisiae.  相似文献   

8.
A procedure involving solid-phase adsorption on bonded silica has been developed for trace enrichment and selective recovery of folate monoglutamates from liver tissue. A variety of reverse-phase (ethyl, octyl, octadecyl, phenyl) and anion-exchange (aminopropyl, quaternary amine, primary/secondary amine) cartridges were tested for their potential to adsorb and elute folate monoglutamates from standard solutions (50 nmol each of H4-pteroylglutamic acid (H4PteGlu), 5-CHO-H4PteGlu, 10-CHO-H4PteGlu, PteGlu, and 5-CH3-H4PteGlu). Quantitative recoveries were obtained from aminopropyl (-NH2) and all reverse-phase cartridges. For the analyses of rat liver folates, 20 ml of clear supernatant obtained from 5 g of tissue was treated with conjugase, which released folate monoglutamates from endogenous stores. Folate monoglutamates were then separated from nonfolate material by selective adsorption and recovery from -NH2 extraction cartridges. The procedure also provided a 10-fold concentrate, which allowed direct analysis by HPLC, using C-18 reverse-phase ion-pair columns coupled with uv detection (290 nm). Experiments with standard folates (n = 3) mixed with liver tissue and carried through the extraction, incubation, and trace-enrichment steps showed the following recoveries: 10-CHO-H4PteGlu, 55 +/- 5.0%; H4PteGlu, 80 +/- 5.0%; 5-CHO-H4PteGlu, 123 +/- 12.0%; and 5-CH3-H4PteGlu, 89 +/- 3.0%. Endogenous compositions of liver folates (n = 5) were as follows: 10-CHO-H4PteGlu, 1.03 +/- 0.3 nmol/g (6.7%); H4PteGlu, 5.70 +/- 1.0 (36.4%); 5-CHO-H4Pte Glu, 1.34 +/- 0.4 (8.7%); and 5-CH3-H4PteGlu, 7.34 +/- 1.2 (48.0%). Chromatographic peaks were identified by their retention times and by comparing their spectral profiles (obtained by a diode array detector) with respective pure folates. We found trace enrichment of biological folates on solid-phase extraction cartridges to be rapid and quantitative. The method allowed, for the first time, direct analysis of tissue folates by HPLC/uv methods.  相似文献   

9.
A Pediococcus cerevisiae mutant that actively accumulated folate (PteGlu), in contrast to the wild-type, was also found to exhibit changes in the pattern of uptake of 5-methyl-tetrahydrofolate (5-CH3-H4PteGlu) and amethopterin. Most of the 5-CH3-H4PteGlue accumulated through a glucose- and temperature-dependent process, and a concentrative uptake was also found in gluocse-starved cells and in cells incubated at OC. About 75% of the accumulated 5-CH3-H4PteGlu exchanged with amethopterin. In contrast to the wild type, the mutant accumulated both diastereoisomers of 5-CH3-H4PteGlue by glucose-dependent and glucose-independent processes. Amethopterin and PteGlue competitively inhibited the uptake in both processes, with an apparent lower affinity of the carrier for PteGlu than for the analogue. p-Chloromercuribenzoate strongly inhibited the uptake (75%). The p-chloromercuribenzoate-nonsusceptible and temperature-independent uptake was also competed by amethopterin. Metabolic poisons like sodium azide, potassium fluoride, iodoacetate, and 2,4-dimitrophenol inhibited the glucose-dependent process. Uptake, in the absence of glucose, was enhanced by sodium azide and potassium fluoride.  相似文献   

10.
Glycine N-methyltransferase, an enzyme that uses S-adenosylmethionine to methylate glycine with the production of sarcosine, was recently shown to be identical with a major folate binding protein of rat liver (Cook, R.J. and Wagner, C. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3631-3634). We now present evidence that 5-methyltetrahydropteroylpentaglutamate (5-CH3-H4PteGlu5) is bound with high specificity, and is a powerful inhibitor of the enzyme. It is proposed that this information may be used to modify the "methyl trap" hypothesis which describes how the availability of one-carbon units is regulated by folate, vitamin B12 and methionine.  相似文献   

11.
Commercially available 5-formyltetrahydrofolate (5-CHO-H4PteGlu) is chemically prepared in a reaction that introduces an asymmetric center at the 6 carbon, and hence is the mixture of diastereomers differing in chirality about this position. (6R)-5-CHO-H4PteGlu, the diastereomer that is not normally found in vivo, was prepared from folic acid. Folic acid was chemically reduced and (6R)-tetrahydrofolate (H4PteGlu) was obtained from the resultant (6R,S)-H4PteGlu by enzymatic consumption of the natural diastereomer of (6R,S)-5,10-CH2-H4PteGlu (reversibly formed from (6R,S)-H4PteGlu in the presence of formaldehyde) with Lactobacillus casei thymidylate synthase. The 5 position of purified (6R)-H4PteGlu was directly formylated in a carbodiimide-catalyzed reaction. The level of contamination of these preparations with the corresponding 6S diastereomers was estimated using the binding of fluorodeoxyuridylate to thymidylate synthase promoted by folate cofactor (for H4PteGlu) and by the growth of folate requiring bacteria (for 5-CHO-H4PteGlu). Purified preparations of (6R)-H4PteGlu promoted the binding of fluorodeoxyuridylate to L. casei thymidylate synthase (in the presence of formaldehyde) only at concentrations greater than 1000-fold higher than equiactive levels of (6S)-H4PteGlu. Likewise, the (6R)-5-CHO-H4PteGlu made by this method was 600 times less active as a growth factor for Pediococcus cerevisiae than was authentic (6S)-5-CHO-H4PteGlu. Hence, the minimum stereochemical purity of these preparations was 99.9% for (6R)-H4PteGlu and 99.8% for (6R)-5-CHO-H4PteGlu.  相似文献   

12.
The present study examined the effect of human milk folate binding protein (FBP) on the intestinal transport of 5-methyltetrahydrofolate (5-CH3H4PteGlu). This was performed by examining the transport of radiolabeled 5-CH3H4PteGlu bound to FBP using everted sacs of rat intestine. In the jejunum at pH 6, transport of 27 nM bound 5-CH3H4PteGlu was linear with time for 30 min of incubation. Transport of 13 nM bound 5-CH3H4PteGlu was higher in the jejunum than in the ileum at both pH 6 (2.1 +/- 0.3 and 0.36 +/- 0.03 pmol/g wet wt/25 min, respectively) and pH 8 (1.9 +/- 0.3 and 0.32 +/- 0.02 pmol/g wet wt/25 min, respectively). In the jejunum, transport of 13 nM bound 5-CH3H4PteGlu at pH 6 was less than transport of an equimolar concentration of free 5-CH3H4PteGlu (2.1 +/- 0.3 and 5.1 +/- 0.5 pmol/g wet wt/25 min, respectively) but was similar at pH 8 (1.9 +/- 0.3 and 2.47 +/- 0.3 pmol/g wet wt/25 min, respectively). In the ileum transport of bound and free 5-CH3H4PteGlu was similar at pH 6 (0.36 +/- 0.03) and 0.41 +/- 0.06 pmol/g wet wt/25 min, respectively) and pH 8 (0.32 +/- 0.02 and 0.43 +/- 0.1 pmol/g wet wt/25 min, respectively). The transport process of bound 5-CH3H4PteGlu in the jejunum was energy, temperature, and Na+ dependent, but not pH dependent, and was competitively inhibited by sulfasalazine. Ninety-two percent of the transport substrate that appeared in the serosal compartment following incubation with bound 5-CH3H4PteGlu was found to be free (unbound) 5-CH3H4PteGlu. These results show that human milk FBP decreases the rate of transport of 5-CH3H4PteGlu in the jejunum and suggest that FBP-bound 5-CH3H4PteGlu may utilize the same transport system as free 5-CH3H4PteGlu. The results also suggest a role for human milk FBP in regulating the nutritional bioavailability of folate.  相似文献   

13.
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoacetium catalyzes transfer of the N5-methyl group of (6S)-methyltetrahydrofolate (CH3-H4folate) to the cob(I)amide center of a corrinoid/iron-sulfur protein (CFeSP), forming H4folate and methylcob(III)amide. We have investigated binding of 13C-enriched (6R,S)-CH3-H4folate and (6R)-CH3-H4folate to MeTr by 13C NMR, equilibrium dialysis, fluorescence quenching, and proton uptake experiments. The results described here and in the accompanying paper [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5728-5735] constitute the first evidence for protonation of the pterin ring of CH3-H4folate. The pH dependence of the chemical shift in the 13C NMR spectrum for the N5-methyl resonance indicates that MeTr decreases the acidity of the N5 tertiary amine of CH3-H4folate by 1 pK unit in both water and deuterium oxide. Binding of (6R,S)-CH3H4folate is accompanied by the uptake of one proton. These results are consistent with a mechanism of activation of CH3-H4folate by protonation to make the methyl group more electrophilic and the product H4folate a better leaving group toward nucleophilic attack by cob(I)amide. When MeTr is present in excess over (6R,S)-13CH3-H4folate, the 13C NMR signal is split into two broad signals that reflect the bound states of the two diastereomers. This unexpected ability of MeTr to bind both isomers was confirmed by the observation of MeTr-bound (6R)-13CH3-H4folate by NMR and by the measurement of similar dissociation constants for (6R)- and (6S)-CH3-H4folate diastereomers by fluorescence quenching experiments. The transversal relaxation time (T2) of 13CH3-H4folate bound to MeTr is pH independent between pH 5.50 and 7.0, indicating that neither changes in the protonation state of bound CH3-H4folate nor the previously observed pH-dependent MeTr conformational change contribute to broadening of the 13C resonance signal. The dissociation constant for (6R,S)-CH3-H4folate is also pH independent, indicating that the role of the pH-dependent conformational change is to stabilize the transition state for methyl transfer, and not to favor the binding of CH3-H4folate.  相似文献   

14.
We have developed a novel HPLC-based fluorometric assay for serine hydroxymethyltransferase activity. In this assay, the 5,10-CH(2)-H(4)PteGlu formed by serine hydroxymethyltransferase activity is reduced to 5-CH(3)-H(4)PteGlu using NaBH(4). Then the fluorescent assay components are separated by reversed-phase chromatography under isocratic conditions and 5-CH(3)-H(4)PteGlu is quantified by comparison with standards. We show that this assay can be used to measure serine hydroxymethyltransferase activity at 10(-8) to 10(-3)M (6R,S)-H(4)PteGlu.  相似文献   

15.
Folylpoly-gamma-glutamate synthetase (FPGS) is the enzyme responsible for metabolic trapping of reduced folate cofactors in cells for use in nucleotide and amino acid biosynthesis. There are two isoforms of FPGS expressed in mouse tissues, one is expressed in differentiated tissue, principally liver and kidney, and the other in all rapidly proliferating cell types. The present study sought the functional difference that would explain the evolution of two mouse FPGS species. Recombinant cytosolic mouse isozymes were compared with respect to steady state kinetics, chain length of polyglutamate derivatives formed, and end-product inhibition by the major reduced folylpentaglutamate cofactors. Both isoforms were equally effective in catalyzing the addition of a mole of glutamic acid to reduced folate monoglutamate substrates. Each isoform was also capable of forming long chain polyglutamate derivatives of the model folate, 5,10-dideazatetrahydrofolate. In contrast, the FPGS isoform derived from rapidly proliferating tissue was much more sensitive to inhibition by (6R)-5,10-CH(2)-H(4)PteGlu(5) and (6S)-H(4)PteGlu(5) than the isoform expressed in differentiated tissues, as demonstrated by 13- and 6-fold lower inhibition constants (K(i)), respectively. Interestingly, each isozyme was equally sensitive to inhibition by (6R)-10-CHO-H(4)PteGlu(5). We drew the conclusion that the decreased sensitivity of the FPGS expressed in mouse liver and kidney to feedback inhibition by 5,10-CH(2)-H(4)PteGlu(5-6) and H(4)PteGlu(5-6) may have evolved to permit accumulation of a larger folate cofactor pool than that found within rapidly proliferating tissue.  相似文献   

16.
The endogenous levels of the various folate monoglutamate compounds in cultured human fibroblasts were determined using high-performance liquid chromatography for the separation of folate monoglutamate. Endogenous folates were converted to monoglutamate forms using conjugase enzyme present in rat serum and incubation was carried out at pH 6.5. This minimized folate coenzyme interconversion during processing. Using methanol for precipitation of protein instead of heat minimized degradation of labile folates. Recovery of all folates except 10-formyltetrahydrofolic acid (10-CHO H4PteGlu) using this procedure was more than 90%. Disruption of cells by boiling appeared to cause less postextraction changes of cell folates than did freezing and thawing or sonication. When heat to release endogenous folate, conjugase treatment with rat serum at pH 6.5, and precipitation of protein with methanol were used, more than half of the intracellular folate of normal fibroblasts in confluent growth was 5-methyltetrahydrofolic acid (5-CH3 H4PteGlu), and 10-CHO H4PteGlu and tetrahydrofolic acid (H4PteGlu) comprised 29 and 6%, respectively.  相似文献   

17.
Taurog RE  Matthews RG 《Biochemistry》2006,45(16):5092-5102
Cobalamin-independent methionine synthase (MetE) catalyzes the final step of de novo methionine synthesis using the triglutamate derivative of methyltetrahydrofolate (CH(3)-H(4)PteGlu(3)) as methyl donor and homocysteine (Hcy) as methyl acceptor. This reaction is challenging because at physiological pH the Hcy thiol is not a strong nucleophile and CH(3)-H(4)PteGlu(3) provides a very poor leaving group. Our laboratory has previously established that Hcy is ligated to a tightly bound zinc ion in the MetE active site. This interaction activates Hcy by lowering its pK(a), such that the thiolate is stabilized at neutral pH. The remaining chemical challenge is the activation of CH(3)-H(4)PteGlu(3). Protonation of N5 of CH(3)-H(4)PteGlu(3) would produce a better leaving group, but occurs with a pK(a) of 5 in solution. We have taken advantage of the sensitivity of the CH(3)-H(4)PteGlu(3) absorption spectrum to probe its protonation state when bound to MetE. Comparison of free and MetE-bound CH(3)-H(4)PteGlu(3) absorbance spectra indicated that the N5 is not protonated in the binary complex. Rapid reaction studies have revealed changes in CH(3)-H(4)PteGlu(3) absorbance that are consistent with protonation at N5. These absorbance changes show saturable dependence on both Hcy and CH(3)-H(4)PteGlu(3), indicating that protonation of CH(3)-H(4)PteGlu(3) occurs upon formation of the ternary complex and prior to methyl transfer. Furthermore, the tetrahydrofolate (H(4)PteGlu(3)) product appears to remain bound to MetE, and in the presence of excess Hcy a MetE.H(4)PteGlu(3).Hcy mixed ternary complex forms, in which H(4)PteGlu(3) is protonated.  相似文献   

18.
Most mammalian cells receive exogenous folate from the bloodstream in the form of 5-methyltetrahydropteroylmonoglutamate (CH3-H4PteGlu1). Because this folate derivative is a very poor substrate for folylpolyglutamate synthetase, the enzyme that adds glutamyl residues to intracellular folates, CH3-H4PteGlu1 must first be converted to tetrahydropteroylmonoglutamate (H4PteGlu1), 10-formyltetrahydropteroylmonoglutamate (CHO-H4PteGlu1), or dihydrofolate (H2folate), which are excellent substrates for folylpolyglutamate synthetase. Polyglutamylation is required both for retention of intracellular folates and for efficacy of folates as substrates for most folate-dependent enzymes. Two enzymes are known that will react with CH3-H4PteGlu1 in vitro, methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase (cobalamin-dependent methionine synthase). These studies were performed to assess the possibility that methylenetetrahydrofolate reductase might catalyze the conversion of CH3-H4PteGlu1 to CH2-H4PteGlu1. CH2-H4PteGlu1 is readily converted to CHO-H4PteGlu1 by the action of methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, and these enzyme activities show very little preference for folypolyglutamate substrates as compared with folylmonoglutamates. We conclude from in vitro studies of the enzyme that methylenetetrahydrofolate reductase cannot convert CH3-H4PteGlu1 to CH2-H4PteGlu1 under physiological conditions and that uptake and retention of folate will be dependent on methionine synthase activity.  相似文献   

19.
To study the effect of zinc deficiency on folate metabolism, three groups of male Sprague-Dawley rats (zinc deficient (ZD), restricted-fed (RF + Zn), and ad libitum-fed control (control] were given a semipurified 25% egg white protein diet. The ZD group received less than 10.3 nmol zinc/g of diet, while the RF + Zn and control groups were given 1620 nmol zinc/g of diet. After 6-7 weeks of feeding, severe zinc deficiency developed in ZD rats. Hepatic methionine synthetase activity was increased in the ZD group compared to both the RF + Zn and control groups, but hepatic 5,10-CH2-H4folate reductase activity was similar in all groups. This increased methionine synthetase activity found in zinc-deficient rats might induce secondary alterations in folate metabolism. These changes include significantly lowered plasma folate levels, decreased 5-CH3-H4folate in liver, and increased rates of histidine and formate oxidation. The latter two findings suggest that the available non-5-CH3-H4folate is increased in zinc deficiency.  相似文献   

20.
Transport and metabolism of folates by bacteria.   总被引:3,自引:0,他引:3  
Transport of labeled folic acid (PteGlu), pteroylpolyglutamates (PteGlu3-5), 5-methyl-tetrahydrofolate (5-methyl-H4PteGlu), and methotrexate in late-log phase cells of Lactobacillus casei was active, and subject to inhibition by unlabeled pteroylmonoglutamates, pteroylpolyglutamates, and iodoacetate, but not glutamate or glutamate dipeptides. Pteroylpolyglutamates were transported without prior hydrolysis and shared a common uptake system with pteroylmonoglutamates. The affinity and maximum velocity of PteGlun uptake decreased with increasing glutamate chin length (Km:PteGlu1, 0.03 mum; PteGlu3, 0.32 mum; PteGlu4, 1.9 mum; PteGlu5, 3.7 mum) and comparisons with growth response curves suggested that polyglutamates were more effectively utilized by L. casei, once transported, than monoglutamate. No concentration of 5-methyl-H4PteGlu3-8 inside the cells was observed. The major folate metabolites found in L. casei preloaded with high levels of [3H]PteGlu (0.5 mum) were 10-formyl-H4PteGlu2 and 10-formyl-PteGlu. Both compounds were released, the monoglutamate more rapidly. Pteroyltriglutamate formation appeared to be a rate-limiting step in intracellular metabolism. No 10-formyl-Pte-Glu was found in iodoacetate-treated cells and efflux was inhibited. Cells preloaded with low levels of [3H]PteGlu (7 nm) metabolized the vitamin to polyglutamate forms, the major derivatives being H4PteGlun. First order exit rates of labeled folate from preloaded L. casei indicated an inhibition of PteGlu uptake with time. Exit rates dropped from 0.05 min-1 to greater than 0.002 min-1 as intracellular folate was metabolized from monoglutamate to polyglutamate derivatives (n larger than or equal to 3). In the latter case, materials lost by efflux were breakdown products and no folate of glutamate chain length greater than two was released. Pediococcus cerevisiae actively transported 5-methyl-H4PteGlu but did not take up to 5-methyl-H4PTeGlu3-8. No active accumulation of 5-methyl-H4PteGlu was observed in Streptococcus faecalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号