首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In the bloodstream of the mammalian host, Trypanosoma brucei takes up host transferrin by means of a high-affinity uptake system, presumably a transferrin receptor. Transferrin-binding activity is seen in the flagellar pocket and is absent in insect form trypanosomes. By transfection we have reconstituted a transferrin-binding complex in insect form trypanosomes. Formation of this complex requires the products of two genes that are part of a variant surface glycoprotein expression site, expression site-associated gene (ESAG) 6 (encoding a protein with GPI-anchor) and ESAG 7 (encoding a protein without any obvious membrane attachment). This complex can be precipitated by transferrin-Sepharose and by an antibody directed only against the ESAG 6 protein. Transfection of ESAG 6 or 7 alone did not result in transferrin binding. In the transfected trypanosomes, the products of ESAG 6 alone and the combination of ESAG 6 and 7 did not exclusively localize to the flagellar pocket, but were present all over the surface of the trypanosome. The reconstituted transferrin-binding complex also did not result in the uptake of transferrin. Additional proteins present in bloodstream trypanosomes, but not in sufficient amounts in insect form trypanosomes, may therefore be required for the correct routing of the transferrin-binding complex to the flagellar pocket, and for its rapid internalization after ligand binding.  相似文献   

2.
A transferrin-binding protein (TFBP) with an apparent molecular weight of 42 kd was purified from detergent-soluble membrane proteins of bloodstream forms of Trypanosoma brucei. The protein is not expressed in the insect-borne stage of the parasite's life-cycle. Purified TFBP can be converted from an amphiphilic to a hydrophilic form by cleavage with T.brucei glycosylphosphatidylinositol (GPI)-specific phospholipase C, demonstrating that the C-terminus is modified by a GPI-membrane anchor. The TFBP is encoded by an expression-site-associated gene [ESAG 6 in the nomenclature of Pays et al. (1989) Cell, 57, 835-845] which is under the control of the promoter transcribing the expressed variant surface glycoprotein gene. The possible function of TFBP as a receptor for the uptake of transferrin in bloodstream forms is discussed.  相似文献   

3.
In Trypanosoma brucei, uptake of host transferrin is mediated by a heterodimeric, glycosylphosphatidylinositol-anchored receptor derived from the 2 expression site-associated genes 6 and 7 (ESAG6 and ESAG7). By using specific antibodies, it is shown here that T. evansi, a trypanosome species transmitted mechanically by biting flies, also expresses a transferrin receptor composed of ESAG6 and ESAG7. The cellular uptake of transferrin in T. evansi is completely inhibited with anti-T. brucei (ESAG6/7 heterodimer) antibodies. The demonstration of a functional ESAG6/7 transferrin receptor in T. evansi supports further its close relationship to T. brucei.  相似文献   

4.
The transferrin (Tf) receptor of Trypanosoma brucei (TbTfR) is encoded by two expression-site-associated genes, ESAG6 and ESAG7. There are around 20 different expression sites containing different copies of these genes that encode TbTfRs with quite distinct affinities for Tf of various hosts. It was proposed that T. brucei has developed multiple expression sites encoding different TbTfRs to ensure sufficient iron uptake in the presence of antibodies competing for binding to Tf. Here it is shown that anti-TbTfR antibody titres produced during chronic murine trypanosomiasis are only one-tenth of those achieved by immunisation of mice using recombinant TbTfR. Calculations indicate that the concentrations of competing anti-TbTfR antibodies present during chronic T. brucei infection are too low to deprive the parasite of iron. In addition, during human African trypanosomiasis the antibody response to the TbTfR seems to be poor and transient. Altogether, the results suggest that the host antibody response to the TbTfR during chronic infection with T. brucei is too low, if present at all, to prevent sufficient iron uptake by bloodstream forms to promote their growth.  相似文献   

5.
6.
The transferrin receptor of the parasite Trypanosoma brucei is a heterodimeric protein complex encoded by the 2 expression site-associated genes (ESAGs) 6 and 7. ESAG6 is a heterogeneously glycosylated protein of 50-60 kDa modified by a glycosylphosphatidylinositol anchor at the C-terminus, while ESAG7 is a 40-42 kDa glycoprotein carrying an unmodified C-terminus. In order to determine whether glycosylation is necessary for dimer formation and ligand binding, the receptor was expressed in insect cells in the presence of tunicamycin. When insect cells were infected with recombinant ESAG6/ESAG7 double expressor baculovirus and grown in the presence of tunicamycin, non-glycosylated forms of ESAG6 and ESAG7 of 46 and 36 kDa, respectively, were synthesized. The non-glycosylated ESAG6 and ESAG7 were capable of forming a heterodimer and of binding transferrin. This results shows that glycosylation is not necessary for synthesis of a functional T. brucei transferrin receptor.  相似文献   

7.
8.
9.
Uptake of host transferrin in bloodstream forms of Trypanosoma brucei is mediated by a heterodimeric, glycosylphosphatidylinositol-anchored receptor. After endocytosis, transferrin is delivered to lysosomes where it is proteolytically degraded. Whether the heterodimeric transferrin receptor is returned to mediate several cycles in ligand uptake is undefined. By using an inducible gene expression system we provide evidence for recycling of the transferrin receptor in bloodstream forms of T. brucei. The metabolic half-life of the transferrin receptor in bloodstream-form trypanosomes is determined to be 7 h which is comparable to the half-lives of recycling receptors in mammalian cells. The cycling time of the trypanosomal transferrin receptor is calculated to be 11 min. By means of the half-life and the cycling time, we calculated that each receptor is recycled 60 times before being degraded on average.  相似文献   

10.
11.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Abstract Trypanosoma brucei and T. equiperdum infect the mammalian bloodstream and tissues. T. brucei is transmitted by tsetse flies between an extremely large range of mammals in sub-Saharan Africa. In contrast, T. equiperdum is restricted to equines, where it is transmitted as a venereal disease. Both species evade immune destruction by changing their variant surface glycoprotein (VSG), encoded in a telomeric VSG expression site. T. brucei has about 20 VSG expression sites, and it has been proposed that their genetic diversity plays a role in host adaptation. Two expression site-associated genes ESAG6 and ESAG7, encode variable transferrin receptor subunits allowing trypanosomes to internalize polymorphic transferrin molecules from different mammals. We investigated if there was a correlation between the size of the trypanosome host range and the degree of ESAG6 genetic diversity. Both T. equiperdum and T. brucei appear to have approximately similar numbers of ESAG6, however, the genetic diversity of the ESAG6 family varies in the two species. We sequenced 114 T. equiperdum ESAG6 genomic clones, resulting in the isolation of 10 T. equiperdum ESAG6 variants. The T. equiperdum ESAG6 genes were less genetically diverse than those of T. brucei in regions known to play a role in transferrin binding. This indicates that ESAG6 genetic diversity playing a role in host adaptation could have been lost in the absence of selection pressure. There was also evidence of positive selection (d N /d S = ~5) acting on other ESAG6 regions not involved in transferrin binding, perhaps due to antigenic variation of these surface molecules.  相似文献   

14.
Trypanosomatids are protozoan parasites that cause human and animal disease. Trypanosoma brucei telomeric ESs (expression sites) contain genes that are critical for parasite survival in the bloodstream, including the VSG (variant surface glycoprotein) genes, used for antigenic variation, and the SRA (serum-resistance-associated) gene, which confers resistance to lysis by human serum. In addition, ESs contain ESAGs (expression-site-associated genes), whose functions, with few exceptions, have remained elusive. A bioinformatic analysis of the ESAG5 gene of T. brucei showed that it encodes a protein with two BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein)/PLUNC (palate, lung and nasal epithelium clone)-like domains and that it belongs to a multigene family termed (GR)ESAG5 (gene related to ESAG5). Members of this family are found with various copy number in different members of the Trypanosomatidae family. T. brucei has an expanded repertoire, with multiple ESAG5 copies and at least five GRESAG5 genes. In contrast, the parasites of the genus Leishmania, which are intracellular parasites, have only a single GRESAG5 gene. Although the amino acid sequence identity between the (GR)ESAG5 gene products between species is as low as 15-25%, the BPI/LBP/PLUNC-like domain organization and the length of the proteins are highly conserved, and the proteins are predicted to be membrane-anchored or secreted. Current work focuses on the elucidation of possible roles for this gene family in infection. This is likely to provide novel insights into the evolution of the BPI/LBP/PLUNC-like domains.  相似文献   

15.
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.  相似文献   

16.
17.
We have documented a single, specific binding site for [3H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes. The binding of the radioligand to its receptor is reversible with cold H1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), we calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity (mean KD +/- SD; 3.8 +/- 4.8 nM) for [3H]pyrilamine, followed by T helper cells (KD = 5.0 +/- 6.6 nM), B cells (KD = 14.2 +/- 2.0 nM), and T suppressor cells (KD = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H1 receptors per cell (35,697 +/- 15,468), followed by B cells (10,732 +/- 9060), T helper cells (6838 +/- 8167), and monocytes (5589 +/- 2266). The kinetics of binding for this radioligand was carried out in resting and mitogen-stimulated T cells over a 48-hr period. We found that the binding affinity for [3H]pyrilamine increased over the 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [3H]pyrilamine decreased over the 48-hr period. Preincubation of T cells with unlabeled histamine before carrying out the radioligand binding assay resulted in a decrease in the binding affinity of the receptors to [3H]pyrilamine, but the number of receptors per cell did not change significantly. Although the function of H1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in modulating the immune response.  相似文献   

18.
The transferrin receptor of Trypanosoma brucei is encoded by genes located in different expression sites. The various expression sites encode slightly different transferrin receptors, which differ substantially in their affinity for transferrin of different host species. It was proposed that T. brucei has developed multiple expression sites encoding different transferrin receptors not only to cope with the diversity of mammalian transferrins, but also to ensure sufficient iron uptake in the presence of anti-transferrin receptor antibodies. This article shows that calculations based on K(d) values argue against the first part of the hypothesis, but might support the second part.  相似文献   

19.
20.
VSG gene 118 is transcribed from a cotransposed pol I-like promoter   总被引:31,自引:0,他引:31  
C Shea  M G Lee  L H Van der Ploeg 《Cell》1987,50(4):603-612
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号