首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The metabolic activation of BP was examined in mouse and rat skin in vivo and in short-term organ culture. In mouse skin, larger quantities of ether- and water-soluble metabolites were formed and more BP became bound covalently to DNA and protein than in rat skin. Qualitative differences in the formation of dihydrodiol metabolites and of BP-deoxyribonucleoside adducts between mouse and rat skin were also observed. Organ culture techniques may not provide a true model of metabolic activation in vivo because it was found that the covalent binding of BP to DNA and protein was reduced in skin maintained in culture despite an accumulation of dihydrodiol and other ether-soluble metabolites. In addition, the proportions of the syn- and anti-isomers of BP-7,8-diol 9,10-oxide involved in the formation of adducts with deoxyguanosine differed between skin treated in organ culture and in vivo.  相似文献   

2.
Mouse skin and human skin have been treated in vivo or in short-term organ culture with dibenz[a,h]anthracene (DB[a,h]A), the related 3,4- or 5,6-diols or the anti- or syn-3,4-diol 1,2-oxides. DNA hydrolysates have been 32P-postlabelled and the adducts present examined by HPLC using a phenyl-modified reverse phase column and, for comparison, by PEI-cellulose TLC and autoradiography. The adducts formed when the diol-epoxides were reacted with salmon sperm DNA were also examined. The results show that in mouse skin treated in vivo, the major adducts formed from DB[a,h]A and the 3,4-diol were the same and that two of them were more polar than those formed in skin or in DNA that had been treated with the related anti- or syn-diol epoxides. Human skin treated with DB[a,h]A in culture yielded an adduct profile that was qualitatively similar to the profiles obtained with mouse skin.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and some are potent carcinogens in rodents. Carcinogenic PAHs are activated in the cells to metabolites that react with DNA to form covalent adducts. For most PAHs the reactive, electrophilic species which bind to DNA, are bay-region diol-epoxides. Application of 32P-postlabeling to PAH-DNA adducts analysis revealed that for some PAHs the adduct profiles generated in model systems are more complex and include adducts which are more polar than those formed by classic bay-region diol-epoxides. This minireview summaries the information gained on typical representatives of polar PAH-DNA adducts. Formation of triol-epoxide-DNA adducts was proposed for chrysene and a non-alterant PAH, benzo[b]fluoranthene (B[b]F). 5-OH-B[b]F, the precursor of B[b]F triol-epoxide, was found to be a potent tumor initiator in mouse skin. For planar PAHs such as dibenzanthracenes the possibility of bis-diol epoxide-DNA adducts formation was suggested. The most comprehensive data were obtained for dibenz[a,j]anthracene (DB[a,j]A). This hydrocarbon when applied to SENCAR mouse skin forms up to 23 species of adducts, most of which are polar. Among these polar adducts seven were identified as derived from DB[aj]A-3,4-10,11-bis-diol. Analysis of tumor-initiating activity showed, however, that this proximate metabolite was inactive in this respect. In contrast, an excellent correlation was observed between levels of less polar DNA adducts (i.e. those derived from bay-region diolepoxides) and skin tumor initiating activity of DB[a,j]A. Thus, while triol-epoxides seems to be involved in tumor initiating activity of the parent compound, non alterant B[b]F, the significance of bis-diol epoxide-DNA adducts, at least those derived from DB[aj]A, is minor.  相似文献   

4.
Chung WY  Jung YJ  Surh YJ  Lee SS  Park KK 《Mutation research》2001,478(1-2):199-206
Benzo[a]pyrene diol epoxide, a metabolite of benzo[a]pyrene (BaP), and chlorohydrin, the reaction product of chloride and the epoxide, form in vitro the same trans- and cis-stereoisomeric DNA adducts, but in different proportions. In this study, we asked whether the DNA adduct concentration can be kept the same by applying the appropriate dose of (+/-)-7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE)and (+/-)-7r,8t,9t-trihydroxy-10c-chloro-7,8,9,10-tetrahydrobenzo[a]pyrene (trans-BPDCH) to rodent skin and whether the DNA adducts formed differ only in their trans- and cis-stereoisomerism. Skin from C57Bl6 mice, spontaneous hypertension rats (SHR) and Sprague-Dawley (SD) rats was treated ex vivo immediately after the death of the animals with anti-BPDE and its corresponding bay region chlorohydrin trans-BPDCH and the epidermis was analyzed for DNA adducts 1h after the application. We found that adduct formation at the exocyclic amino groups of deoxyguanosine and deoxyadenosine in epidermal DNA followed a linear dose-response within 6--100 nmol/cm(2) with both chemicals. In order to achieve the same adduct concentration in mouse, spontaneous hypertension rat (SHR), and Sprague-Dawley (SD) rat skin, respectively, a 37-, 23- and 10-fold lower dose of anti-BPDE than of trans-BPDCH had to be applied. The order of 2'-deoxyguanosine (dGuo) adduct concentration with anti-BPDE was similar to what has been reported, but the order with trans-BPDCH was (+)-cis-BPDE-N(2)-dGuo adduct>(+)-trans-BPDE-N(2)-dGuo=(-)-trans-BPDE-N(2)-dGuo>(-)-cis-BPDE-N(2)-dGuo in mouse skin. Irrespective of species or strain, a significantly higher proportion of cis-adducts was obtained after treatment with trans-BPDCH than after treatment with anti-BPDE. Therefore, DNA adduct concentration can be kept the same by applying the appropriate dose of anti-BPDE and trans-BPDCH to rodent skin and the DNA adducts formed differ only in their trans- and cis-stereoisomerism.  相似文献   

5.
The technique of 32P postlabeling of DNA-carcinogen adducts is a useful and extremely sensitive method of detecting and quantitating DNA damage by carcinogens. We have adapted the 32P method to analysis by high-pressure liquid chromatography, making the procedure more rapid and convenient than when thin-layer chromatography is used. Following DNA isolation and hydrolysis, nucleotide-carcinogen adducts are enhanced relative to normal nucleotides by solvent extraction and then labeled with high-specific-activity [gamma-32P]ATP. The resulting 32P-postlabeled nucleotides are resolved by reverse-phase ion-pair HPLC. After as little as 3 h of exposure to carcinogens, DNA adducts can be demonstrated from 1 microgram or less of mouse hepatic DNA. Acetylated and nonacetylated adducts can be resolved from hepatic DNA of mice treated with 2-aminofluorene. Differences in DNA damage as measured by adduct formation were demonstrated between "rapid" and "slow" acetylator mouse strains. Rapid-acetylator C57BL/6J mice had three times the amount of hepatic DNA adducts as slow-acetylator A/J mice 3 h after a 60 mg/kg dose of 2-aminofluorene. 4-Aminobiphenyl and 2-naphthylamine each showed an adduct peak with retention time similar to that of the nonacetylated 2-aminofluorene adduct, while benzidine gave a major adduct that eluted somewhat earlier as would be expected for an acetylated adduct. The alkenylbenzenes, safrole and methyleugenol, also formed DNA adducts detectable by this method. DNA prepared from skin of mice painted with benzo[a]pyrene also contained carcinogen-DNA adducts detectable and resolvable by HPLC analysis following 32P postlabeling. The combination of HPLC with 32P postlabeling appears to be a useful technique for the rapid detection and quantitation of DNA damage caused by several classes of aromatic carcinogens.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants and complete carcinogens in rodents. Metabolism of lower chlorinated congeners with rat liver microsomes was investigated in earlier studies and DNA adduction was also reported. The current study was designed to compare DNA adducts formed after bioactivation of PCBs with rat, mouse and human hepatic microsomes, and to investigate the role of quinoid PCB metabolites in DNA adduct formation. Eight congeners ranging from mono- to hexachlorinated biphenyls were tested. Metabolites obtained through microsomal bioactivation as well as synthetic quinoid metabolites of 4-monochlorobiphenyl (4-CB) were incubated with calf-thymus DNA (CT-DNA), and the resulting adducts were analyzed by the 32P-post-labelling method. DNA adducts were formed with mono- di- and tri-chlorinated congeners, but not with higher chlorinated congeners. Similar adduct patterns were observed for 2-monochlorobiphenyl (2-CB) activated with hepatic microsomes from rat, mouse and human, while 4-CB, 3,4-dichlorobiphenyl (3,4-CB) and 3,4,5-trichlorobiphenyl (3,4,5-CB) showed similar patterns for two out of the three microsomal systems tested. 4,4' -trichlorobiphenyl (4,4' -CB) showed different adduct patterns in all microsomal systems. Higher adduct levels were obtained with the rodent microsomes compared with human microsomes and were related to higher cytochrome P450 activity. When adducts derived from microsomal activation of 4-CB were compared by co-chromatography with those derived from the incubation of DNA with synthetic 2-(4' -chlorophenyl)-1,4-benzoquinone (4-BQ), one adduct co-migrated in three different chromatography systems. This study demonstrates that rodents as well as human hepatic enzymes metabolize lower chlorinated biphenyl congeners to reactive intermediates that form DNA adducts in vitro and shows that the para-quinone metabolites of PCBs are, in part, involved in direct DNA adduction.  相似文献   

8.
Activation of the moderate carcinogen 6-methylbenzo[a]pyrene (6-CH(3)BP) by one-electron oxidation to form DNA adducts was studied. Iodine oxidation of 6-CH(3)BP in the presence of dGuo produces BP-6-CH(2)-N(2)dGuo, BP-6-CH(2)-N7Gua and a mixture of 6-CH(3)BP-(1&3)-N7Gua, whereas in the presence of Ade the adducts BP-6-CH(2)-N1Ade, BP-6-CH(2)-N3Ade, BP-6-CH(2)-N7Ade and 6-CH(3)BP-(1&3)-N1Ade are obtained. Furthermore, for the first time an aromatic hydrocarbon radical cation afforded an adduct with dThd, the stable adduct BP-6-CH(2)-N3dThd. Formation of these adducts indicates that the 6-CH(3)BP radical cation has charge localized at the 6, 1 and 3 position. When 6-CH(3)BP was activated by horseradish peroxidase in the presence of DNA, two depurinating adducts were identified, BP-6-CH(2)-N7Gua (48%) and 6-CH(3)BP-(1&3)-N7Gua (23%), with 29% unidentified stable adducts. In the binding of 6-CH(3)BP catalyzed by rat liver microsomes, the same two depurinating adducts, BP-6-CH(2)-N7Gua (22%) and 6-CH(3)BP-(1&3)-N7Gua (10%), were identified, with 68% unidentified stable adducts. In 6-CH(3)BP-treated mouse skin, the two depurinating adducts, BP-6-CH(2)-N7Gua and 6-CH(3)BP-(1&3)-N7Gua, were identified. Although quantitation of these two adducts was not possible due to coelution of metabolites on HPLC, they appeared to be the major adducts found in mouse skin. These results show that 6-CH(3)BP forms depurinating adducts only with the guanine base of DNA, both in vitro and in mouse skin. The weaker reactivity of 6-CH(3)BP radical cation vs. BP radical cation could account for the weaker tumor-initiating activity of 6-CH(3)BP in comparison to that of BP.  相似文献   

9.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

10.
Chinese hamster V79 cells were treated with the anti- and syn-diastereomers of the bay- or fjord-region diol-epoxides of four polycyclic aromatic hydrocarbons, namely benzo[a]pyrene (BP), benzo[c]chrysene (BcC), benzo[g]chrysene (BgC) and benzo[c]phenanthrene (BcPh). The frequency of induction of 6-thioguanine-resistant mutations was determined, and the extent of formation of DNA adducts was measured by 32P-postlabelling. When expressed as mutation frequency per nanomoles compound per millilitre incubation medium, this group of chemicals expressed a 160-fold range in potency. In agreement with previous experimental studies, the anti-diol-epoxide of BcC was highly mutagenic, inducing in excess of 3 x 10(4) mutations/10(6) cells per nmol compound/ml. The mutagenic activities of the anti- and syn-diol-epoxides of BP were 10- and 100-fold lower, respectively. Both diol-epoxides of BgC, the syn-BcC and the anti-BcPh derivatives were also highly mutagenic, and only the syn-BcPh diol-epoxide was less mutagenic than the anti-diol-epoxide of BP. Determination of the levels of DNA adducts formed by the diol-epoxides indicated that the most mutagenic compounds were the most DNA reactive, although the fjord-region diol-epoxides gave rise to more complex patterns of adducts than those of the BP diol-epoxides. When the mutagenicity results were expressed as mutations per femtomoles total adducts formed, all compounds showed similar activities. Thus the potent mutagenicity of the fjord region diol-epoxides appears to be due to the high frequency with which they form DNA adducts in V79 cells, rather than to formation of adducts with greater mutagenic potential.  相似文献   

11.
Formation of DNA adducts in various tissues of dogs fed a single dose of the carcinogen 2-aminofluorene was investigated. Adduct analysis was performed using a technique that allows measurement of both N-(deoxyguanosin-8-yl)-2-amino-2-aminofluorene-DNA adduct formed by reaction of N-hydroxy-2-aminofluorene with DNA, as well as the polar 2-aminofluorene-DNA adducts formed when 2-aminofluorene is activated by prostaglandin H synthase-peroxidase in vitro. Two male beagle (A and B) dogs were examined and a different DNA adduct profile was observed with each dog. For the dog A, N-(deoxyguanosin-8-yl)-2-aminofluorene was the major adduct found in hepatic DNA; no peroxidase-derived adducts were detected in this tissue. In contrast, adducts eluting similarly to peroxidase-derived adducts were found in urinary tract tissues of this dog with the relative abundance of these adducts in the order urothelium greater than renal medulla greater than renal cortex, which correlates with the respective tissues' prostaglandin H synthase activity. N-(Deoxyguanosin-8-yl)-2-aminofluorene was detected in the renal tissues, but not in urothelium. For dog B, only the N-(deoxyguanosin-8-yl)-2-aminofluorene adduct was observed in all tissues examined, including the urothelium. However, total binding to liver, kidney, and bladder were two-, two-, and four-fold lower, respectively, than dog A. These data indicate that both prostaglandin H synthase-mediated activation and N-hydroxylation of 2-aminofluorene occur in vivo and may be subjected to pharmacodynamic considerations. Furthermore, the tissue distribution of the peroxidase-mediated 2-aminofluorene adducts suggests this process may also be of importance in the bladder-specific carcinogenicity of aromatic amines.  相似文献   

12.
Investigations on the metabolism of 3H-labelled chrysene, benz[a]anthracene, 7-methylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, benzo[a]pyrene, dibenz[a,c]anthracene and dibenz[a,h]anthracene by mouse skin maintained in short-term organ culture were carried out. Estimations of the distribution of the metabolites of each hydrocarbon present after 24 h showed that there were wide variations both in the rates at which the hydrocarbons were metabolised and in the amounts of metabolites covalently bound to skin macromolecules. All the hydrocarbons were metabolised to dihydrodiols, which were identified by comparison on high pressure liquid chromatography (HPLC) with the authentic compounds, and these were the same diols as those that were formed in previous experiments with rat-liver microsomal fractions. However, free dihydrodiols represented only relatively small proportions of the total amounts of metabolites formed. All the hydrocarbons yielded dihydrodiols of the type that could give rise to bay-region diol-epoxides, when further metabolised, some of which are thought to be involved in hydrocarbon carcinogenesis.  相似文献   

13.
The metabolic activation of benzo[a]pyrene (BP) was examined in six samples of human skin after topical application of the hydrocarbon to the skin in short-term organ culture. The results show that all of the samples were capable of metabolizing BP to water-soluble products and to ether-soluble products that included the 4,5-, 7,8- and 9,10-dihydrodiols and a product which had chromatographic properties identical with those of authentic trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (BP-11,12-diol). The major BP-deoxyribonucleoside adduct detected in each skin sample appeared to be formed from the reaction of r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BP-7,8-diol 9,10-oxide) with deoxyguanosine residues in DNA.  相似文献   

14.
The metabolism of benzo[a]pyrene (BP) by microsomal fractions of the skin, lungs and liver of the mouse, and the effects on this process of pretreatment with the xenobiotics phenobarbital (PB) and 3-methylcholanthrene (3-MC) were examined. Differences between the untreated tissues were found both in terms of the total amounts of diol recovered and in the relative proportions of the individual diols extracted following incubation. Induction with PB or 3-MC significantly altered the profiles of metabolic diols obtained with epidermal and hepatic microsomes compared with their respective controls. Pulmonary microsomes showed similar trends to those obtained with liver microsomes but these were not statistically significant. The optical purity of the BP-7,8-diol that was formed by each microsomal type was examined by direct resolution of the enantiomers on HPLC using a chiral stationary phase. In each case the (-)-7R,8R-enantiomer predominated. Pretreatment with 3-MC significantly decreased the optical purity of BP-7,8-diol recovered from incubations with skin microsomes, but significantly increased the optical purity of the diol extracted from incubations with lung and liver microsomes. In addition to the diols, an unidentified BP metabolite was found that eluted between BP-9,10- and 4,5-diol on a reverse-phase high-performance liquid chromatography (HPLC) system and which represented a major product in extracts of incubations of BP with both induced and uninduced skin and lung microsomal fractions.  相似文献   

15.
It has been proposed that trans-4-acetylaminostilbene (AAS) is an initiator for tumor formation in rat liver and that the metabolically formed hydroxamic acid ester ultimately reacts with nucleic acids in vivo. We have now studied the generation of a major adduct in vitro. trans-4-N-Acetoxy-N-acetylaminostilbene (N-acetoxy-AAS) was reacted with guanosine at pH 7.5 and reaction products were separated by chromatography on Sephadex LH-20 and RP18 HPLC. The major adduct isolated consists of four isomers which have been tentatively identified by mass- and 1H-NMR spectroscopy as (S,S)- and (R,R)-guanosine-N2,beta-N3,alpha-N-acetylaminobibenzyl and the respective regio isomers guanosine-N2,alpha-N3,beta-N-acetylaminobibenzyl. These adducts are formed in a ratio of 9:9:1:1. Under acidic conditions (pH 2) the ribose moiety is removed and two regio isomeric base adducts are formed in the ratio 9:1. Results to be published indicate that the adducts are also formed in vivo in rat liver RNA and DNA.  相似文献   

16.
This study was designed to investigate the effects of four compounds that are shown to influence the cytochrome P450 system, on the metabolism of and DNA adduct formation by benzo[alpha]pyrene (BaP) in human skin epithelial cells in culture. Radiolabeled BaP was used in the metabolism studies, and the levels of metabolites in the ethylacetate extracts of the intracellular and extracellular fractions were determined by HPLC. Among the various metabolites detected BaP-7,8-diol was the only one that was an intermediate on the activation pathway of BaP to the ultimate carcinogen, BPDE I. Both BHA and 7,8-BF pretreatment significantly decreased intracellular production of BaP-7,8-diol compared to cultures treated with only radiolabeled BaP. MeBHA pretreatment greatly increased intracellular BaP-7,8-diol formation compared to BaP treated controls, while disulfiram pretreatment had no effect on the intracellular concentration. Cultures pretreated with BHA, 7,8-BF or disulfiram formed 30-40% less BPDE I-dG adducts than nonpretreated cultures, while cultures pretreated with MeBHA exhibited approximately 200% increase in the BPDE I-dG adduct formation. Thus, BHA and 7,8-BF act similarly in reducing BaP activation and adduct formation. Alternatively, MeBHA increased BaP activation and adduct formation in human keratinocyte cultures in vitro. Disulfiram pretreatment did not reduce BaP-7,8-diol formation, but decreased BPDE I-dG adducts. These studies indicate that modulators of the P450 system act in different fashions at the level of production of an oxygenated procarcinogen metabolite, altering the amount of specific carcinogen-dG adducts that lead to the expression of a transformed phenotype.  相似文献   

17.
Exposure to estrogens is associated with increased risk of breast and other types of human cancer. Estrogens are converted to metabolites, particularly the catechol estrogen-3,4-quinones (CE-3,4-Q), that can react with DNA to form depurinating adducts. These adducts are released from DNA to generate apurinic sites. Error-prone base excision repair of this damage may lead to the mutations that can initiate breast, prostate and other types of cancer. The reaction of CE-3,4-Q with DNA forms the depurinating adducts 4-hydroxyestrone(estradiol) [4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These two adducts constitute more than 99% of the total DNA adducts formed. Increased levels of these quinones and their reaction with DNA occur when estrogen metabolism is unbalanced. Such an imbalance is the result of overexpression of estrogen activating enzymes and/or deficient expression of the deactivating (protective) enzymes. This unbalanced metabolism has been observed in breast biopsy tissue from women with breast cancer, compared to control women. Recently, the depurinating adduct 4-OHE1(E2)-1-N3Ade has been detected in the urine of prostate cancer patients, but not in urine from healthy men. Mutagenesis by CE-3,4-Q has been approached from two different perspectives: one is mutagenic activity in the lacI reporter gene in Fisher 344 rats and the other is study of the reporter Harvey-ras gene in mouse skin and rat mammary gland. A-->G and G-->A mutations have been observed in the mammary tissue of rats implanted with the CE-3,4-Q precursor, 4-OHE2. Mutations have also been observed in the Harvey-ras gene in mouse skin and rat mammary gland within 6-12 h after treatment with E2-3,4-Q, suggesting that these mutations arise by error-prone base excision repair of the apurinic sites generated by the depurinating adducts. Treatment of MCF-10F cells, which are estrogen receptor-alpha-negative immortalized human breast epithelial cells, with E2, 4-OHE2 or 2-OHE2 induces their neoplastic transformation in vitro, even in the presence of the antiestrogen ICI-182,780. This suggests that transformation is independent of the estrogen receptor. The transformed cells exhibit specific mutations in several genes. Poorly differentiated adenocarcinomas develop when aggressively transformed MCF-10F cells are selected and injected into severe combined immune depressed (SCID) mice. These results represent the first in vitro/in vivo model of estrogen-induced carcinogenesis in human breast epithelial cells. In other studies, the development of mammary tumors in estrogen receptor-alpha knockout mice expressing the Wnt-1 oncogene (ERKO/Wnt-1) provides direct evidence that estrogens may cause breast cancer through a genotoxic, non-estrogen receptor-alpha-mediated mechanism. In summary, this evidence strongly indicates that estrogens can become endogenous tumor initiators when CE-3,4-Q react with DNA to form specific depurinating adducts. Initiated cells may be promoted by a number of processes, including hormone receptor stimulated proliferation. These results lay the groundwork for assessing risk and preventing disease.  相似文献   

18.
Diesel exhaust is known to induce tumours in animals and is suspected of being carcinogenic in humans. Of the compounds found in diesel exhaust, 3-nitrobenzanthrone (3-NBA) is an extremely potent mutagen and suspected human carcinogen forming multiple DNA adducts in vitro. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA), and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) were identified as 3-NBA metabolites. In order to gain insight into the pathways of metabolic activation leading to 3-NBA-derived DNA adducts we treated Wistar rats intraperitoneally with 2mg/kg body weight of 3-NBA, 3-ABA, 3-Ac-ABA, or N-Ac-N-OH-ABA and compared DNA adducts present in different organs. With each compound either four or five DNA adduct spots were detected by TLC in all tissues examined (lung, liver, kidney, heart, pancreas, and colon) using the nuclease P1 or butanol enrichment version of the 32P-postlabelling method, respectively. Using HPLC co-chromatographic analysis we showed that all major 3-NBA-DNA adducts produced in vivo in rats are derived from reductive metabolites bound to purine bases and lack an N-acetyl group. Our results indicate that 3-NBA metabolites (3-ABA, 3-Ac-ABA and N-Ac-N-OH-ABA) undergo several biotransformations and that N-hydroxy-3-aminobenzanthrone (N-OH-ABA) appears to be the common intermediate in 3-NBA-derived DNA adduct formation. Therefore, 3-NBA-DNA adducts are useful biomarkers for exposure to 3-NBA and its metabolites and may help to identify enzymes involved in their metabolic activation.  相似文献   

19.
The nematocide, grain fumigant, and gasoline additive 1,2-dibromoethane (DBE) is both a cellular and a genetic toxin that is metabolically activated in rats and mice by mixed function oxidases (MFO) as well as glutathione 5-transferases (GST). The purpose of this study was to determine whether DBE is similarly metabolized and bioactivated by human liver in vitro. Human liver microsomal and cytosolic metabolism of DBE was monitored by the production of aqueous-soluble metabolites from [14-C]-DBE. Reactive intermediates were detected as irreversibly bound adducts to protein or DNA. 1,2-Dibromoethane was metabolized by human liver cytosolic GST, microsomal GST, and microsomal MFO. Cytosolic GST activity (9 +/- 2 nmol/20 min/mg protein) was about four times greater than the other two activities. Only MFO activity resulted in adducts irreversibly bound to protein (1.5 +/- .4 nmol/20 min/mg protein) and was inhibited by the presence of glutathione. Both MFO and GST activity resulted in irreversibly bound adducts to DNA. Microsomal and cytosolic GST activity each produced about twice as many DNA adducts as microsomal MFO activity. These results suggest that human liver, like rat and mouse liver, metabolizes DBE to aqueous-soluble metabolites by both MFO and GST activity. Furthermore, each of these activities produces reactive metabolites that can irreversibly bind to cellular macromolecules.  相似文献   

20.
Despite intensive research over the last two decades, there are still no specific markers of endogenous lipid hydroperoxide-mediated DNA damage. We recently demonstrated that heptanone-etheno-2'-deoxyguanosine adducts are formed in the DNA of rat intestinal epithelial cells that stably express cyclooxygenase-2. Heptanone-etheno adducts can only arise from the reaction of lipid hydroperoxide-derived 4-oxo-2(E)-nonenal with DNA. This raised the possibility that similar adducts would be formed in vivo in settings where cyclooxygenase-2 expression is increased. Therefore, DNA-adduct formation was studied in C57BL/6JAPC(min) mice, a colorectal cancer mouse model in which cyclooxygenase-2 is up-regulated. 15(S)-Hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid is the major lipid hydroperoxide produced endogenously by cyclooxygenase-2. It undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, which forms heptanone-etheno adducts with DNA. A quantitative comparison was made of the heptanone-etheno-DNA adducts present in C57BL/6J and C57BL/6JAPC(min) mice. Using highly specific and sensitive methodology based on stable isotope dilution liquid chromatography/tandem mass spectrometry, we have detected the endogenous formation of heptanone-etheno adducts in mammalian tissue DNA for the first time. In addition, we found that there were statistically significant increased levels of the heptanone-etheno-2'-deoxyguanosine and heptanone-etheno-2'-deoxycytidine adducts in the C57BL/6JAPC(min) mice when compared with the control C57BL/6J mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号