首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a series of aminooxy analogues of the biogenic polyamines spermidine and spermine on the conformation of calf thymus DNA is studied. These new molecules are isosteric and charge insufficient analogues that are suitable to study the roles of both charge distribution and structural requirements in the molecular physiology of the biogenic polyamines. They are also evidenced as useful tools to inhibit polyamine biosynthesis and cell growth. Circular dichroism (CD) spectra of solutions containing DNA and the aminooxy analogues at different concentrations (100-1000 microM) and different pH values, (5-7.5) are recorded. We use both sonicated and highly polymerized calf thymus DNA. The CD spectra of sonicated DNA showed the formation of Psi-DNA, a highly ordered aggregated structure similar to liquid crystals, in the presence of the aminooxy analogues. Aggregation induced by an aminooxy derivative of spermine is followed by DNA collapse when increasing the polyamine concentration. The features of Psi-DNA are not detected for highly polymerized DNA. Temperature melting measurements support a high degree of structural order of the aggregates. The CD experiments indicate that dications are unable to induce major changes on the macromolecular structure of DNA. In addition, aggregation is only observed when the trimethylene moiety is present between two adjacent positive charges. The observed differences among the CD spectra of DNA solutions with different aminooxy derivatives of spermidine indicate different roles for different amino groups of this biogenic polyamine when interacting with DNA. Our results support the idea that aminooxy analogues can be used as good models in studying the physiological functions of biogenic polyamines.  相似文献   

2.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

3.
DNA undergoes condensation, conformational transitions, aggregation and resolubilization in the presence of polyamines, positively charged organic molecules present in all cells. Under carefully controlled environmental conditions, DNA can also transform to a liquid crystalline state in vitro. We undertook the present work to examine the ability of spermidine, N4-methylspermidine, spermine, N1-acetylspermine and a group of tetramine, pentamine and hexamine analogs of spermine to induce and stabilize liquid crystalline DNA. Liquid crystalline textures were identified under a polarizing microscope. In the absence of polyamines, calf thymus DNA assumed a diffused, planar cholesteric phase with entrapped bubbles when incubated on a glass slide at 37°C. In the presence of spermidine and spermine, the characteristic fingerprint textures of the cholesteric phase, adopting a hexagonal order, were obtained. The helical pitch was 2.5 µm. The final structures were dendrimeric and crystalline when DNA was treated with spermine homologs and bis(ethyl) derivatives. A cholesteric structure was observed when DNA was treated with a hexamine at 37°C. This structure changed to a hexagonal dendrimer with fluidity on prolonged incubation. These data show a structural specificity effect of polyamines on liquid crystalline phase transitions of DNA and suggest a possible physiological function of natural polyamines.  相似文献   

4.
Polyamines favor DNA triplex formation at neutral pH   总被引:15,自引:0,他引:15  
K J Hampel  P Crosson  J S Lee 《Biochemistry》1991,30(18):4455-4459
The stability of triplex DNA was investigated in the presence of the polyamines spermine and spermidine by four different techniques. First, thermal-denaturation analysis of poly[d(TC)].poly[d(GA)] showed that at low ionic strength and pH 7, 3 microM spermine was sufficient to cause dismutation of all of the duplex to the triplex conformation. A 10-fold higher concentration of spermidine produced a similar effect. Second, the kinetics of the dismutation were measured at pH 5 in 0.2 M NaCl. The addition of 500 microM spermine increased the rate by at least 2-fold. Third, in 0.2 M NaCl, the mid-point of the duplex-to-triplex dismutation occurred at a pH of 5.8, but this was increased by nearly one pH unit in the presence of 500 microM spermine. Fourth, intermolecular triplexes can also form in plasmids that contain purine.pyrimidine inserts by the addition of a single-stranded pyrimidine. This was readily demonstrated at pH 7.2 and 25 mM ionic strength in the presence of 100 microM spermine or spermidine. In 0.2 M NaCl, however, 1 mM polyamine is required. Since, in the eucaryotic nucleus, the polyamine concentration is in the millimolar range, then appropriate purine-pyrimidine DNA sequences may favor the triplex conformation in vivo.  相似文献   

5.
Linear polyamines are excellent promoters of triplex DNA formation. The effects of structural rigidization of polyamines on triplex DNA stability are not known at present. We wished to develop a series of polyamine analogs as secondary ligands for triplex DNA stabilization for antigene applications. To accomplish this goal, we synthesized cyclopolyamines by interconnecting the two amino or imino groups of linear polyamines with a --(CH2)n-bridge (n=3,4,5). Melting temperature (Tm) data showed that [4,3]-spermine and [4,4]-spermine stabilized poly(dA) x 2poly(dT) triplex at >25 microM concentrations (Tm = 71 degrees C at 100 microM). The dTm/dlog [polyamine] values for these compounds were 26 and 40, respectively. [4,3]-Spermine and [4,4]-spermine also stabilized triplex DNA formed by a purine-motif triplex-forming oligonucleotide, TG3TG4TG4TG3T with its target duplex, as determined by Tm, circular dichroism (CD) spectroscopy, and electrophoretic mobility shift assay (EMSA). In contrast, [4,4]-putrescine and [4,5]-putrescine as well as [4,5]-spermine had no triplex DNA stabilizing effect. CD spectra also showed triplex DNA aggregation and psi-DNA formation at >100 microM [4,3]-spermine. These data demonstrate that structural rigidization of linear polyamines has a profound effect on their ability to stabilize triplex DNA and provoke conformational transitions.  相似文献   

6.
T Antony  T Thomas  A Shirahata  T J Thomas 《Biochemistry》1999,38(33):10775-10784
RNA-DNA hybrid stabilization is an important factor in the efficacy of oligonucleotide-based antisense gene therapy. We studied the ability of natural polyamines, putrescine, spermidine, and spermine, and a series of their structural analogues to stabilize RNA-DNA hybrids using melting temperature (Tm) measurements, circular dichroism (CD) spectroscopy, and the ethidium bromide (EB) displacement assay. Phosphodiester (PO) and phosphorothioate (PS) oligodeoxyribonucleotides (ODNs) (21-mer) targeted to the initiation codon region of c-myc mRNA and the corresponding complementary RNA oligomer were used for this study. In the absence of polyamines, the Tm values of RNA-PODNA and RNA-PSDNA helices were 41 +/- 1 and 35 +/- 1 degrees C, respectively, in 10 mM sodium cacodylate buffer. In the presence of a hexamine analogue of spermine at a concentration of 25 microM, the hybrids were stabilized with Tm values of 80 and 78 degrees C, for RNA-PODNA and RNA-PSDNA, respectively. The d(Tm)/d(log[polyamine]) values, representing the concentration-dependent stabilization of hybrid helices by polyamines, increased from 10 to 24 for both the RNA-PODNA and RNA-PSDNA helices. Bisethyl substitution of the primary amino groups of the polyamines reduced the hybrid stabilizing potential of the polyamines. Among the homologues of spermidine [H2N(CH2)3NH(CH2)nNH2, where n = 2-8; n = 4 for spermidine] and spermine [H)N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-8; n = 4 for spermine], spermidine and spermine were the most effective agents for stabilizing the hybrid helices. At a physiologically compatible concentration of 150 mM NaCl, the hybrid helix formed from PODNA was more stable than that formed from PSDNA in the presence of polyamines. CD spectroscopic studies showed that the hybrids were stabilized in a conformation close to A-DNA in the presence of polyamines. The relative binding affinity of the polyamine homologues for the hybrid helices, as measured by the EB displacement assay, followed the same order in which they stabilized the hybrids. These results are important in the antisense context and in the general context of polyamine-nucleic acid interactions, and suggest that pentamine and hexamine analogues of spermine might be useful in improving the efficacy of therapeutic ODNs.  相似文献   

7.
DNA complexes of spermine and spermidine become resolubilized at very high concentrations of the oligoamine. It has been postulated that high oligoamine concentrations shift the DNA from the globule back to the coil phase. The present study indicates that DNA resolubilization at high concentrations of spermine and spermidine is explained by formation of small particles of condensed DNA that cannot be precipitated by centrifugation. The fact that DNA stays condensed during resolubilization was confirmed using a relatively new condensation assay and three independent microscopic techniques. A considerable portion of DNA was found to be in particles with diameter <100 nm. Formation of such small particles is likely to be caused by colloidal forces. The ability to form small, condensed DNA particles in solutions that contain high concentrations of oligocation should aid in the design of synthetic DNA vectors for gene transfer and gene therapy and in the handling of DNA for diagnostic studies.  相似文献   

8.
Bis-naphthalimidopropyl spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-spermine (BNIPOSpm) showed high in vitro cytotoxicity against human breast cancer MCF-7 cells with IC(50) values of 1.38, 2.91 and 8.45 microM, respectively. These compounds were found to effectively displace the intercalating agent ethidium bromide bound to the calf thymus DNA using fluorimetric methods (C(50) 0.08-0.12 microM) and their apparent equilibrium binding constants (K(app)) were calculated to be in the range of 10.5-18 x 10(7) M(-1). Furthermore, strong stabilisation of calf thymus DNA duplex in the presence of bis-naphthalimidopropyl polyamine derivatives (BNIPSpd, BNIPSpm and BNIPOSpm) was observed by UV spectrophotometric analysis (T(m)=93.3-97 degrees C compared with 75 degrees C for calf thymus DNA without drug). Because of their inherent fluorescence, these compounds were localised preferentially inside the nucleus as evidenced by their direct observation under the fluorescence microscope. The results obtained suggest that the cytotoxic activity of the bis-naphthalimidopropyl polyamines may be in part, caused by their effects on DNA.  相似文献   

9.
Biogenic polyamines, such as putrescine, spermidine, and spermine are small organic polycations involved in numerous diverse biological processes. These compounds play an important role in nucleic acid function due to their binding to DNA and RNA. It has been shown that biogenic polyamines cause DNA condensation and aggregation similar to that of inorganic cobalt(III)hexamine cation, which has the ability to induce DNA conformational changes. However, the nature of the polyamine.DNA binding at the molecular level is not clearly established and is the subject of much controversy. In the present study the effects of spermine, spermidine, putrescine, and cobalt(III)hexamine on the solution structure of calf-thymus DNA were investigated using affinity capillary electrophoresis, Fourier transform infrared, and circular dichroism spectroscopic methods. At low polycation concentrations, putrescine binds preferentially through the minor and major grooves of double strand DNA, whereas spermine, spermidine, and cobalt(III)hexamine bind to the major groove. At high polycation concentrations, putrescine interaction with the bases is weak, whereas strong base binding occurred for spermidine in the major and minor grooves of DNA duplex. However, major groove binding is preferred by spermine and cobalt(III)hexamine cations. Electrostatic attractions between polycation and the backbone phosphate group were also observed. No major alterations of B-DNA were observed for biogenic polyamines, whereas cobalt(III)hexamine induced a partial B --> A transition. DNA condensation was also observed for cobalt(III)hexamine cation, whereas organic polyamines induced duplex stabilization. The binding constants calculated for biogenic polyamines are K(Spm) = 2.3 x 10(5) M(-1), K(Spd) = 1.4 x 10(5) M(-1), and K(Put) = 1.02 x 10(5) M(-1). Two binding constants have been found for cobalt(III)hexamine with K(1) = 1.8 x 10(5) M(-1) and K(2) = 9.2 x 10(4) M(-1). The Hill coefficients indicate a positive cooperativity binding for biogenic polyamines and a negative cooperativity for cobalt(III)hexamine.  相似文献   

10.
S Flock  R Labarbe    C Houssier 《Biophysical journal》1996,70(3):1456-1465
We have investigated the effect of different zwitterionic compounds on DNA precipitation induced by spermine4+. Glycine, beta-alanine, 4-aminobutyric acid, and 6-aminocaproic acid have shown an increasing capacity to attenuate DNA precipitation. This protection effect has been correlated with the dielectric constant increase of their corresponding solutions. Calculations based on these experimental data and counter-ion condensation theory have confirmed the importance of this parameter for DNA-ion interactions and precipitation mechanisms. We have also observed a resolubilization of DNA in the presence of 6-aminocaproic acid at high spermine4+ concentration and in the presence of glycine at high spermidine3+ concentration. This could be explained by an increase of screening effect with polyamine concentration.  相似文献   

11.
The interaction of polyamines with DNA: a 23Na NMR study.   总被引:1,自引:1,他引:0       下载免费PDF全文
The interaction between a variety of polyamines, both naturally occurring and synthetic, and calf thymus DNA has been studied using 23Na NMR. The relaxation behaviour of 23Na reflects the extent of interaction of Na+ with DNA phosphate groups and therefore the extent of charge neutralisation of DNA phosphate groups (P) by polyamine amino and imino groups (N) in solutions of DNa, polyamine and Na+. The studies reveal that whereas spermine and spermidine are capable of expelling nearly all of the Na+ ions from DNA at N/P approximately 1, diamines such as putrescine and homologues of spermine and spermidine are capable of neutralising only roughly 50% of DNA phosphates. The results provide a challenge to current models of DNA-polyamine interactions.  相似文献   

12.
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro.  相似文献   

13.
Polyamine-DNA interactions. Condensation of chromatin and naked DNA   总被引:2,自引:0,他引:2  
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin by polyamines, such as spermine, spermidine and its analogs designated by formula NH3+(CH2)iNH2+(CH2)jNH3+, where i = 2,3 and j = 2,3, putrescine, cadaverine and MgCl2. It has been found that the different polyamines affect DNA and chromatin in a similar way. The level of compaction of the chromatin fibers induced by spermine, spermidine and the triamines NH3+(CH2)3NH2+(CH2)3NH3+ and NH3+(CH2)3NH2+(CH2)2NH3+ and MgCl2 is found to be identical. The triamine NH3+(CH2)3NH2+(CH2)2NH3+ and the diamines studied condense neither chromatin nor DNA. This drastic difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations might play essential roles in their interactions with DNA and chromatin. It is shown that a mixture of mono- and multivalent cations affect DNA and chromatin condensation competitively, but not synergistically, as claimed in a recent report by Sen and Crothers (Biochemistry 25, 1495-1503, 1986). We have also estimated the extent of negative charge neutralization produced by some of the polyamines on their binding to chromatin fibers. The stoichiometry of polyamine binding at which condensation of chromatin is completed is found to be two polyamine molecules per DNA turn. The extent of neutralization of the DNA phosphates by the histones in these compact fibers is estimated to be about 55%. The model of polyamine interaction with chromatin is discussed.  相似文献   

14.
In a previous study we showed that natural polyamines interact in the nuclear environment with phosphate groups to form molecular aggregates [nuclear aggregates of polyamines (NAPs)] with estimated molecular mass values of 8000, 4800 and 1000 Da. NAPs were found to interact with genomic DNA, influence its conformation and interfere with the action of nucleases. In the present work, we demonstrated that NAPs protect naked genomic DNA from DNase I, whereas natural polyamines (spermine, spermidine and putrescine) fail to do so. In the context of DNA protection, NAPs induced noticeable changes in DNA conformation, which were revealed by temperature-dependent modifications of DNA electrophoretic properties. In addition, we presented, for NAPs, a structural model of polyamine aggregation into macropolycyclic compounds. We believe that NAPs are the sole biological forms by which polyamines efficiently protect genomic DNA against DNase I, while maintaining its dynamic structure.  相似文献   

15.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

16.
To estimate the polyamine distribution in bovine lymphocytes and rat liver, the binding constants (K) for DNA, RNA, phospholipid, and ATP were determined under the conditions of 10 mM Tris-HCl, pH 7.5, 2 mM Mg2+, and 150 mM K+. The binding constants of spermine for calf thymus DNA, Escherichia coli 16 S rRNA, phospholipid in rat liver microsomes and ATP were 1.15 x 10(2), 6.69 x 10(2), 2.22 x 10(2), and 5.95 x 10(2) M-1, respectively. From these binding constants and experimentally determined cellular concentrations of macromolecules, ATP, and polyamines, spermine distribution in the cells was estimated. In bovine lymphocytes, the mols of spermine bound to DNA, RNA, phospholipid, and ATP were 0.79, 3.7, 0.23, and 4.3 per 100 mol of phosphate of macromolecules or ATP, respectively. In rat liver, they were 0.19, 1.0, 0.05, and 0.97/100 mol of phosphate of macromolecules or ATP, respectively. The binding constants of spermidine for macromolecules and ATP were smaller than those of spermine, but a similar tendency was observed with spermidine distribution among macromolecules and ATP in the above two cells. The amount of polyamine bound to DNA and phospholipid was significantly lower than that to RNA. When either the Mg2+ or K+ concentration increased, the amount of free spermine and that bound to RNA and ATP increased, but the amount of spermine bound to DNA and phospholipid decreased. The results indicate that most polyamines exist as a polyamine-RNA complex in cells. Under the conditions that globin synthesis is stimulated by spermine in a rabbit reticulocyte cell-free system, the amount of spermine bound to RNA was very close to the value estimated in the cells.  相似文献   

17.
Summary Variations in level of polyamines and their related enzymes are frequently observed in response to some treatments which affect in a different way male and female. The possibility of a gender-related difference in the oxidation of polyamines was investigated in rats by measuring the activity of polyamine oxidase, a ubiquitous enzyme of vertebrate tissues, which transforms spermine into spermidine and spermidine into putrescine. The study was carried out on thymus, spleen, kidney and liver of young rats of both sexes, and female rats showed a lower polyamine oxidase activity than male rats in all the tissues. We also found higher values of spermidine acetylation in female than male rats in thymus and liver. Owing to these gender-related differences, a higher spermidine N-acetyltransferase/ polyamine oxidase ratio was found in female than in male rats. A second gender-related difference was a higher spermidine/spermine ratio in female than in male, the only exception being the thymus. These basal differences possibly account for the gender-related differences of polyamine metabolic enzyme activities in response to some treatments, including drugs or hormones.  相似文献   

18.
Polyamines are naturally occurring intracellular polycations that are essential for viability and growth of eukaryotes. Dysregulation of polyamine metabolism is a hallmark of cancer and the carcinogenic process, and consequently development of polyamine analogues has emerged as a viable strategy for therapeutic intervention. Previously, we showed that the naturally occurring polyamines spermidine and spermine were quite effective at inducing the oligomerization of nucleosomal arrays in vitro, suggesting that polyamines may play a key role in regulating higher order chromatin structures in vivo. Here, we analyse the ability of a number of synthetic polyamine analogues to potentiate formation of higher order chromatin structures in vitro. We find that a class of long-chain polyamines called oligoamines are potent inducers of nucleosomal array oligomerization in vitro and that these same polyamine analogues rapidly block yeast cell growth.  相似文献   

19.
We studied the effects of natural and synthetic polyamines on the conformation of an oligodeoxyribonucleotide (ODN1) harboring the estrogen response element (ERE) by circular dichroism (CD) spectroscopy and polyacrylamide gel electrophoresis. Putrescine and spermidine had no marked effect on the CD spectrum of ODN1. In contrast, spermine provoked and stabilized two characteristic changes in the CD spectrum. The first change was indicated by an increase in the intensity of the CD band at 280 nm at 0.5 mM spermine in Tris-HCl buffer containing 50 mM NaCl. This change appears to be related to changes in base tilt and conformational alterations similar to A-DNA. At 1-2 mM spermine, the CD spectrum was characterized by a loss of positive bands at 220 and 270 nm. This change might have contributions from polyamine-induced condensation/aggregation of DNA. Spectral measurements were also conducted in Tris-HCl buffer containing 150 mM NaCl to minimize contributions from condensation and aggregation of ODN1. Under these conditions, CD spectral changes were retained by (ODN1), although the magnitude of the change was diminished. In contrast, a control oligdeoxyribonucleotide (ODN2) having similar base composition did not show any significant change in the CD spectrum in the presence of 150 mM NaCl and 2 mM spermine. The changes in the CD spectrum of ODN1 were highly sensitive to polyamine structure, as evidenced by experiments using spermine analogs with altered number of -CH2- groups separating the amino and imino groups. Electrophoretic mobility shift analysis further showed ODN1 stabilization by spermine and its analogs. These data demonstrate the ability of an ODN containing ERE to undergo conformational transitions in the presence of polyamines and suggest a possible mechanism for polyamine-mediated alterations in the interaction of estrogen receptor with ERE.  相似文献   

20.
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin induced by spermine, triamines NH3+(CH2)iNH+(CH2)jNH3+, designated as much less than i, j much greater than: much less than 3, 4 much greater than (spermidine), much less than 3, 3 much greater than, much less than 2, 3 much greater than, much less than 2, 2 much greater than; the diamines putrescine and cadaverine and MgCl2. It is found that the different polyamines affected DNA and chromatin in a similar way. The degree of compaction of the chromatin fibers induced by spermine, triamines except much less than 2, 2 much greater than and Mg2+ has been found to be identical. The triamine much less than 2, 2 much greater than and the diamines studied do not condense either chromatin of DNA. Such a big difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations are important for their interactions with DNA and chromatin. The stoichiometry of polyamine binding to chromatin at which condensation occurred is found to be 2 polyamine molecules per DNA helical turn. Polyamines are supposed to bind to the exposed sites of core DNA every 10 b.p. The extent of DNA phosphate neutralization by the histones is estimated to be about 55%. It has been shown that a mixture of mono- and multivalent cations affected DNA and chromatin condensation competitively and not synergistically, as claimed in a recent report by Sen and Crothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号