首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

2.
Mature zygotic embryos of recalcitrant Christmas tree species Fraser fir [Abies fraseri (Pursh) Poir], and Nordmann fir (Abies nordmanniana L.k.), and Virginia pine (Pinus virginiana Mill.) were used as explants for Agrobacterium tumefaciens strain GV3850-mediated transformation using the gfp (green fluorescent protein) gene as a reporter. Factors including media used for inoculation and co-cultivation, concentrations of acetosyringone, and antibiotics in tissue culture media have been evaluated. A high transformation frequency was obtained on TE medium containing 50μM acetosyringone and using 500 mg/l timentin to eliminate bacteria. Transient gene expression was observed in all three Christmas tree species, but transgenic plants were only produced from Virginia pine. Stable integration and expression of transgenes in the plant genome of Virginia pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable transformation system has been established in Virginia pine and this system would provide an opportunity to transfer economically important genes into Christmas tree species.  相似文献   

3.
Transgenic radiata pine (Pinus radiata D. Don) plants containing a Bacillus thuringiensis (Bt) toxin gene, crylAc, were produced by means of biolistic transformation of embryogenic tissue. Using the selectable marker gene nptII and corresponding geneticin selection, 20 independent transgenic lines from five genotypes were established. Over 200 plants regenerated from ten transgenic lines were successfully transferred to soil. The integration and expression of the introduced genes in transgenic tissue and/or plants were confirmed by PCR, Southern hybridisation and neomycin phosphotransferase II (NPTII) and Bt ELISA assays. Bioassays with larvae of the painted apple moth, Teia anartoides, demonstrated that transgenic plants displayed variable levels of resistance to insect damage, with one transgenic line being highly resistant to feeding damage.  相似文献   

4.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础.  相似文献   

5.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

6.
Zhao TJ  Zhao SY  Chen HM  Zhao QZ  Hu ZM  Hou BK  Xia GM 《Plant cell reports》2006,25(11):1199-1204
To improve the transformation efficiency of wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens, we explored the possibility of employing the basal portion of wheat seedling (shoot apical meristem) as the explants. Three genotypes of wheat were transformed by A. tumefaciens carrying β-1, 3-glucanase gene. After vernalization, the seeds to be transformed were germinated. When these seedlings grew up to 2∼5 cm, their coleoptile and half of the cotyledon were cut out, and the basal portions were infected by A. tumefaciens. A total 27 T0 transgenic plants were obtained, and the average transformation efficiency was as high as 9.82%. Evident segregation occurred in some of the T1 plants, as was indicated by PCR and Southern blotting analysis. Investigation of the T2 plants revealed that some transformed plants had higher resistance to powdery mildew than the controls. Northern blotting revealed that β-1, 3-glucanase gene was normally expressed in the T2 plants, which showed an increased resistance to powdery mildew. The results above indicate that the exogenous gene has been successfully integrated into the genome of wheat, transmitted and expressed in the transgenic progeny. From all the results above, it can be concluded that Agrobacterium inoculum to the basal portion of wheat seedling is a highly efficient and dependable transformation method. It can be developed into a practicable method for transfer of target gene into wheat.Tong-Jin Zhao and Shuang-Yi Zhao contributed equally to this paper.  相似文献   

7.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

8.
9.
Liu J  Su Q  An L  Yang A 《Biotechnology letters》2009,31(2):295-303
A tissue culture-independent plant transformation method, called ovary-drip transformation, was established in which a minimal linear gene cassette [35S CaMV promoter, open reading frame of soluble modified green fluorescent protein (smGFP), and NOS terminator] was transformed into soybean. The method is characterized by directly dripping a DNA solution, which is supplemented with a surfactant, onto the ovary wound 6–8 h after self-pollination. The growth of the pollen tube was measured after self-pollination. The movement of smGFP across the passageway toward the embryo sac was monitored using fluorescein isothiocyanate-labeled DNA. The transformation frequency reached 3.2% by PCR analysis. Southern analysis of the primary transformants denoted the integration of a single site smGFP. The transgenic plants exhibited a high level of smGFP expression which was visible in the immature embryos of the transgenic soybean.  相似文献   

10.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

11.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

12.
ACC氧化酶(ACC oxidase,ACO)是催化乙烯合成的关键酶之一,乙烯参与植物的盐胁迫反应过程,而盐胁迫严重影响花生产量。本研究通过对AhACOs基因的克隆及功能验证,探究AhACOs在花生盐胁迫响应中的生物学功能,为花生耐盐品种的选育提供基因资源。以花生耐盐突变体M29的cDNA为模板扩增得到基因AhACO1和AhACO2,与植物表达载体pCAMBIA super1300重组后,通过农杆菌介导的花粉管注射法将重组质粒转化到花育22号中。收获后切取籽仁远胚端部分子叶,利用PCR检测筛选阳性籽仁。利用qRT-PCR分析AhACOs基因表达量,通过毛细管柱气相色谱法检测植株的乙烯释放量。阳性籽仁和对照籽仁种植21 d后浇盐水,观察其表型变化。结果发现,盐胁迫后,转基因植株生长状况好于对照组花育22号,并且其叶绿素相对含量SPAD(soil and plant analyzer development)值和净光合速率(net photosynthesis rate,Pn)均高于对照组花生。另外,AhACO1和AhACO_(2)转基因植株的乙烯释放量分别为对照组花生的2.79倍和1.87倍。这些结果表明AhACO1和AhACO2可显著提高花生的耐盐能力。  相似文献   

13.
In order to meet the future requirement of using non-antibiotic resistance genes for the production of transgenic plants, we have adapted the selectable marker system PMI/mannose to be used in Agrobacterium-mediated transformation of flax (Linum usitatissimum L.) cv. Barbara. The Escherichia coli pmi gene encodes a phosphomannose isomerase (E.C. 5.1.3.8) that converts mannose-6-phosphate, an inhibitor of glycolysis, into fructose-6-phosphate (glycolysis intermediate). Its expression in transformed cells allows them to grow on mannose-selective medium. The Agrobacterium tumefaciens strain GV3101 (pGV2260) harbouring the binary vector pNOV2819 that carries the pmi gene under the control of the Cestrum yellow leaf curling virus constitutive promoter was used for transformation experiments. Transgenic flax plants able to root on mannose-containing medium were obtained from hypocotyl-derived calli that had been selected on a combination of 20 g L−1 sucrose and 10 g L−1 mannose. Their transgenic state was confirmed by PCR and Southern blotting. Transgene expression was detected by RT-PCR in leaves, stems and roots of in vitro grown primary transformants. The mean transformation efficiency of 3.6%, that reached 6.4% in one experiment was comparable to that obtained when using the nptII selectable marker on the same cultivar. The ability of T1 seeds to germinate on mannose-containing medium confirmed the Mendelian inheritance of the pmi gene in the progeny of primary transformants. These results indicate that the PMI/mannose selection system can be successfully used for the recovery of flax transgenic plants under safe conditions for human health and the environment.  相似文献   

14.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

15.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

16.
Crane C  Wright E  Dixon RA  Wang ZY 《Planta》2006,223(6):1344-1354
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.  相似文献   

17.
A genetic transformation procedure for Chamaecyparis obtusa was developed after co-cultivation of embryogenic tissues with disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the sgfp (synthetic green fluorescent protein) visual reporter and nptII (neomycin phoshotransferase II) selectable marker genes. The highest transformation frequency was 22.5 independent transformed lines per dish (250 mg embryogenic tissue) following selection on kanamycin medium. Transgenic plantlets were regenerated through the maturation and germination of somatic embryos. The intensity of GFP fluorescence, observed under a fluorescence microscope, varied from very faint to relatively strong, depending on the transgenic line or part of the transgenic plant. The integration of the genes into the genome of regenerated plantlets was confirmed by Southern blot analysis.  相似文献   

18.
A laboratory microcosm experiment was established to study whether the role of Cognettia sphagnetorum (Enchytraeidae) in affecting Scots pine (Pinus sylvestris) seedling growth is influenced by wood ash-amendment, i.e., neutralisation of the raw humus soil. Coniferous forest soil, inoculated with soil microbes and nematodes, was either treated with wood ash or left as ash-free control. Wood ash (corresponding to an amount of 5000 kg ha–1) was either spread on the soil surface or mixed into the soil. Enchytraeid and pine seedling biomass, abundance of nematodes, and water leachable NH4 +-N and NO3 -N were measured 26 and 51 weeks after initiation of the experiment and root length and N concentration of needles were measured 51 weeks after initiation of the experiment. Wood ash when mixed into the soil, reduced the biomass of C. sphagnetorum. Nematodes were unaffected by the treatments. In the ash-free soils C. sphagnetorum had little influence on pine growth, but it did decrease root length and root to shoot ratio. In the absence of enchytraeids wood ash decreased pine biomass production and root length. However, the presence of enchytraeids in the ash-treated soil compensated the ash-induced negative effects on the pine performance. Enchytraeids increased and wood ash decreased water leachable NH4 +-N in the presence but not in the absence of enchytraeids, while water leachable NO3 -N was not affected by the treatments. It was concluded that C. sphagnetorum can be important in ensuring nutrient cycling and plant growth in situations when an ecosystem encounters disturbances.  相似文献   

19.
Leaf discs of grapevine cv. Seyval blanc originating from in vitro cultures were transformed with Agrobacterium tumefaciens strain LBA 4404 harbouring the vector pGJ42 carrying genes for chitinase and RIP (ribosome-inactivating protein) in an attempt to improve fungal resistance. The gene for neomycin phosphotransferase II (nptII) was used as the selectable marker gene. The explants were cocultivated for 2 days with recombinant Agrobacteria and then submitted to selection on NN69 medium containing 100 mg/l kanamycin. Successful regeneration and conversion of transgenic plantlets were obtained. Stable integration of foreign DNA was confirmed by PCR and Southern blot analyses, and protein expression was detected by Western blot. The regenerated transgenic plants were adapted to the greenhouse and showed no evidence of phenotypical alterations. The foreign genes introduced into the transformed plants did not effect the expected improvement in fungal disease resistance under field conditions for the major pests Uncinula necator and Plasmopara viticola.  相似文献   

20.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号