共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro differentiation of human embryonic neural stem cells 总被引:2,自引:1,他引:1
2.
3.
4.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation. 相似文献
5.
目的探讨1号染色体长臂(1q)的扩增对人胚胎干细胞(hESCs)神经分化的影响。 方法通过对H9 hESCs克隆化培养的方法获得1q扩增的hESCs系。中期染色体计数的方法明确细胞内的染色体数目,核型分析鉴定染色体变异的情况,全基因组测序(WGS)分析基因组片段拷贝数变异的情况。使用碱性磷酸酶(AP)染色法检测细胞干性维持的情况,RT-qPCR和免疫荧光染色等方法检测胚胎干细胞(ESCs)标志物OCT4、SOX2、NANOG、REX1和SSEA4等的表达。拟胚体(EB)形成实验进行hESCs不定向分化、全反式视黄酸(RA)诱导hESCs向外胚层分化、使用STEMdiff? SMADi Neural Induction Kit诱导hESCs向神经祖细胞(NPCs)定向分化,并通过RT-qPCR、AP染色和免疫荧光染色等方法检测其分化能力。两组间比较采用独立样本t检验。 结果分离获得一株1q发生2个拷贝扩增的细胞,核型分析发现额外获得的2个1q是等臂染色体,核型为[47,XX,+i (1q)],将其命名为Amp (1q)。Amp (1q)AP染色呈阳性,且表达ESCs标志物OCT4、SOX2、NANOG、REX1和SSEA4,具备干细胞自我更新的特征。EB分化过程中,与H9细胞相比,Amp (1q)向外胚层的分化能力下降,MAP2 (29.67±1.53比66.67±1.15)和PAX6 (8001±567.09比28308.00±1692.50)的表达降低(P均< 0.05);RA诱导分化实验进一步证明,与H9细胞相比,Amp (1q)存在向外胚层分化的缺陷,MAP2 (22.50±3.54比42.50±2.12)和PAX6 (5403.00±569.93比38756.00±1068.44)的表达降低(P均< 0.05)。当定向诱导向神经谱系分化时,Amp (1q)形成NPCs的能力降低,NPCs标志物PAX6的表达水平低于H9细胞(13.83±3.75比88.33±1.53) (P均< 0.05)。 结论Amp (1q)具有ESCs自我更新的能力,但1q的扩增会削弱hESCs神经分化的能力。 相似文献
6.
Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells
Wu Ma Tara Tavakoli Eric Derby Yevgeniya Serebryakova Mahendra S Rao Mark P Mattson 《BMC developmental biology》2008,8(1):90
Background
Interactions of cells with the extracellular matrix (ECM) are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC) differentiation into neural progenitors and neurons. 相似文献7.
Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells 总被引:2,自引:0,他引:2
Lee G Kim H Elkabetz Y Al Shamy G Panagiotakos G Barberi T Tabar V Studer L 《Nature biotechnology》2007,25(12):1468-1475
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders. 相似文献
8.
Fiona C Mansergh Carl S Daly Anna L Hurley Michael A Wride Susan M Hunter Martin J Evans 《BMC developmental biology》2009,9(1):5-18
Background
Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs 相似文献9.
Boissart C Nissan X Giraud-Triboult K Peschanski M Benchoua A 《Development (Cambridge, England)》2012,139(7):1247-1257
The role of microRNAs (miRNAs) as coordinators of stem cell fate has emerged over the last decade. We have used human embryonic stem cells to identify miRNAs involved in neural lineage commitment induced by the inhibition of TGFβ-like molecule-mediated pathways. Among several candidate miRNAs expressed in the fetal brain, the two isoforms of miR-125 alone were detected in a time window compatible with a role in neural commitment in vitro. Functional analysis indicated that miR-125 isoforms were actively involved in the promotion of pluripotent cell conversion into SOX1-positive neural precursors. miR-125 promotes neural conversion by avoiding the persistence of non-differentiated stem cells and repressing alternative fate choices. This was associated with the regulation by miR-125 of SMAD4, a key regulator of pluripotent stem cell lineage commitment. Activation of miR-125 was directly responsive to the levels of TGFβ-like molecules, placing miR-125 at the core of mechanisms that lead to the irreversible neural lineage commitment of pluripotent stem cells in response to external stimuli. 相似文献
10.
Somayeh Karimzadeh Saman Hosseinkhani Ali Fathi Farangis Ataei Hossein Baharvand 《European journal of cell biology》2018,97(2):126-135
Recent evidence suggests that mitochondrial apoptosis regulators and executioners may regulate differentiation, without being involved in cell death. However, the involved factors and their roles in differentiation and apoptosis are still not fully determined. In the present study, we compared mitochondrial pathway of cell death during early neural differentiation from human embryonic stem cells (hESCs). Our results demonstrated that ROS generation, cytosolic cytochrome c release, caspases activation and rise in p53 protein level occurred upon either neural or apoptosis induction in hESCs. However, unlike apoptosis, no remarkable increase in apoptotic protease activating factor-1 (Apaf-1) level at early stages of differentiation was observed. Also the caspase-like activity of caspase-9 and caspase-3/7 were seen less than apoptosis. The results suggest that low levels of Apaf-1 as an adaptor protein might be considered as a possible regulatory barrier by which differentiating cells control cell death upon rise in ROS production and cytochrome c release from mitochondria. Better understanding of mechanisms via which mitochondria-mediated apoptotic pathway promote neural differentiation can result in development of novel therapeutic approaches. 相似文献
11.
12.
13.
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives. 相似文献
14.
Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the interrogation of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special emphasis on the cellular signaling involved in these processes. The derivation process affects the yield and homogeneity of the NP cells. Then when exposed to the correct environmental signaling cues, NP cells can follow a unique and robust temporal cell differentiation process forming numerous phenotypes. 相似文献
15.
16.
The Wnt family of secreted signaling proteins regulates many aspects of animal development and the behavior of several types of stem cells, including embryonic stem (ES) cells. Activation of canonical Wnt signaling has been shown to either inhibit or promote the differentiation of ES cells into neurons, depending on the stage of differentiation. Here, we describe the expression of all 19 mouse Wnt genes during this process. Using the well-established retinoic acid induction protocol we found that all Wnt genes except Wnt8b are expressed as ES cells differentiate into neurons, many of them in dynamic patterns. The expression pattern of 12 Wnt genes was analyzed quantitatively at 2-day intervals throughout neural differentiation, showing that multiple Wnt genes are expressed at each stage. A large proportion of these, including both canonical and noncanonical Wnts, are expressed at highest levels during later stages of differentiation. The complexity of the patterns observed indicates that disentangling specific roles for individual Wnt genes in the differentiation process will be a significant challenge. 相似文献
17.
Jung-Eun Gil Joong-Hyun Shim Hyun-Ju You Sun Ha Paek Jong-Hoon Kim 《FEBS letters》2009,583(3):561-567
We demonstrate enhanced differentiation of oligodendrocytes during neurogenesis of human embryonic stem cells (hESCs) using an extracellular matrix protein, vitronectin (VN). We show that VN is expressed in the ventral part of the developing human spinal cord. Combined treatment of retinoic acid, sonic hedgehog, and noggin in the presence of VN allows hESCs to differentiate into O4-positive oligodendrocytes. Particularly, VN profoundly promotes the derivation of oligodendrocyte progenitors that proliferate and differentiate into oligodendrocytes in response to mitogenic and survival factors. These results support the beneficial effect of VN on oligodendrocytic differentiation of hESCs. 相似文献
18.
19.
Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells
Freude KK Penjwini M Davis JL LaFerla FM Blurton-Jones M 《The Journal of biological chemistry》2011,286(27):24264-24274
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis, we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably, we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media, up to 80% of cells expressed the neural stem cell marker nestin, and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation, we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together, our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein. 相似文献
20.
In vitro differentiation of transplantable neural precursors from human embryonic stem cells. 总被引:55,自引:0,他引:55
The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair. 相似文献