首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous reports have shown that lamininglycopeptides (LN-GPs),the total glycopeptides prepared from laminin (LN),can prevent the experimental lung metastasis and liver metastasis of mouse cancer cells.In order to explore the anti-metastatic mechanism of LN-GPs,we studied the effects of LN-GPs on metastasisrelated behaviors of cancer cells in vitro.LN-GPs did not affect cell survival.However,LN-GPs inhibited cell attachment and spreading of S180 cells on LN-and Matrigelsubstrate in dose-dependent and time-dependent manners.Moreover,inhibition of cell attachment and spreading on Matrigel substrates were much greater on Matrigel substrate than on LN substrate.In the gresence of LN-GPs,S180 cells on LN substrate changed from a flattened polygonal shape to a round one,the migration of S180 cells on LN substrate decreased,and the number of a highly invasive human pulmonary giant carcinoma PG cells invading Matrigel filter in a Boyden chamber was reduced.LN-GPs thus have multiple inhibitory effects on cancer metastasisrelated behaviors.  相似文献   

2.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.  相似文献   

3.
Xu Z  Shen MX  Ma DZ  Wang LY  Zha XL 《Cell research》2003,13(5):343-350
Transforming growth factor-bl (TGF-β1), a multi-function polypeptide, is a double-edged sword in cancer. For some tumor cells, TGF-β1 is a potent growth inhibitor and apoptosis inducer. More commonly, TGF-β1 losesits growth-inhibitory and apoptosis-inducing effects, but stimulates the metastatic capacity of tumor cells. It is currently little known about TGF-β1-promoted cell migration in hepatocellular carcinoma (HCC) cells, let alone its mechanism. In this study, we found that TGF-β1 lost its tumor-suppressive effects, but significantly stimulated cellmigration in SMMC-7721 human HCC cells. By FACS and Western blot analysis, we observed that TGF-β1 enhanced the expression of ct5131 integrin obviously, and subsequently stimulated cell adhesion onto fibronectin(Fn). Furthermore, we observed that TGF-β1 could also promote SMMC-7721 cells adhesion onto laminin (Ln).Our data also provided evidences that TGF-β1 induced epithelial-to-mesenchymal transformation (EMT) in SMMC-7721 cells. First, SMMC-7721 cells clearly switched to the spindle shape morphology after TGF-β1 treatment.Furthermore, TGF-β1 induced the down-regulation of E-cadherin and the nuclear translocation of β1-catenin. These results indicated that TGF-β1-promoted cell adhesion and TGF-β1-induced epithelial-to-mesenchymal transfor-mation might be both responsible for TGF-β1-enhanced cell migration.  相似文献   

4.
Transforming growth factor-β (TGF-β),a multifunctional cytokine,exerts contradictory rolesin different kinds of cells.A number of studies have revealed its involvement in the progression of many typesof tumors.To investigate the effect of TGF-β on gastric carcinoma,SGC7901,BGC823 and MKN28 (aTGF-β-resistant cell line) adenocarcinoma clones were used.After pretreatment in serum-free medium withor without 10 ng/ml TGF-β1,their experimental metastatic potential,chemotaxis,and invasive and adhesiveability were measured.Furthermore,zymography for gelatinase was processed.Liver colonies were alsomeasured 4 weeks after inoculation of SGC7901,BGC823 and MKN28 in Balb/c nude mice,and an increasein the number of surface liver metastases was seen in SGC7901 (from 11.0±3.0 to 53.3±3.3) and BGC823(from 9.3±2.5 to 60.0±2.8) groups,whereas there was no difference between MKN28 groups (from 35.2±3.8 to 38.5±2.7).In vitro experiments showed that TGF-β1 increased the adhesion capacity of SGC7901and BGC823 cells to immobilized reconstituted basement membrane/fibronectin matrices and promoted theirpenetration through reconstituted basement membrane barriers.Zymography demonstrated that enhancedinvasive potential was partly due to the increased type Ⅳ collagenolytic (gelatinolytic) activity,but there wasno difference in type Ⅳ collagenolytic activity and other biological behaviors between MKN28 groups.Theseresults suggested that TGF-β1 might modulate the metastatic potential of gastric cancer cells by promotingtheir ability to break down and penetrate basement membrane barriers and their adhesive and motile activities.We speculated that TGF-β1 might act as a progression-enhancing factor in gastric cancer.Therefore blockageof TGF-β or TGF-β signaling might prevent gastric cancer cells from invading and metastasizing.  相似文献   

5.
6.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

7.
Cortactin is an F-actin binding protein, regulating cell movement and adhesive junction assembly. However, the function of cortactin in epithelial-mesenchymal transition (EMT) remains elusive. Here we found that during transforming growth factor-β1 (TGF-β1)- induced EMT in AML-12 murine hepatocytes, cortactin underwent tyrosine dephosphorylation. Inhibition of the dephosphorylation of eortactin by sodium vanadate blocked TGF-β1-induced EMT. Knockdown of cortactin by RNAi led to decrease of intercellular junction proteins E-cadherin and Zonula occludens-1 and induced expression of mesenchymal protein fibronectin. Additionally, knockdown of cortactin further promoted TGF-β1-induced EMT in AML-12 cells, as determined by EMT markers and cell morphological changes. Moreover, migration assay showed that cortactin knockdown promoted the migration of AML-12 cells, and also enhanced TGF-β1-induced migration. Our study showed the involvement of cortactin in the TGF- β1-induced EMT.  相似文献   

8.
Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1(Receptor of activated C kinase) and brk(brinker), mad(mother against dpp), and sax(saxophone), which encode three components of TGF-β signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis.  相似文献   

9.
10.
Kupffer cells,tissue-resident macrophage lineage cell,are enriched in vertebrate liver.The mouse F4/80~+ Kupffer cells have been subclassified into two subpopulations according to their phenotype and function:CD68~+ subpopulation with potent reactive oxygen species(ROS) production and phagocytic capacities,and CD11b~+ subpopulation with a potent capacity to produce T helper 1 cytokines.In addition,CD11b~+ Kupffer cells/macrophages may be migrated from the bone marrow or spleen,especially in inflammatory conditions of the liver.For analyzing diverse Kupffer cell subsets,we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells.During L.monocytogenes infection,hepatic CD69~+ Kupffer cells were significantly induced and expanded,and CD69~+ Kupffer cells expressed higher level of CD11 b,and particularly high level of membrane-bound TGF-β1(mTGF-β1) but lower level of F4/80.We also found that clodronate liposome administration did not eliminate hepatic CD69~+ Kupffer cell subset.We consider the hepatic CD69~+ Kupffer cell population corresponds to CD11b~+Kupffer cells,the bone marrow-derived population.Hepatic CD69~+ Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo,meanwhile,they did not interfere with activation of CD4 T cells.Thus,we have identified a new subset of inflammation-induced CD69~+ Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection.CD69~+ Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.  相似文献   

11.
SUNHONG  WEIKANGSHI 《Cell research》1996,6(2):155-166
Human gastric cancer MKN-45 cells which are resistant to TGF-β growth inhibition and possess TGF-β type I and type Ⅲ receptors,but not type Ⅱ receptors,have been used as a model system to reconstitute these cancer cells with TGF-β RII cDNA.The results of these experiments indicated that the reexpression of TGF-β RII gene in MKN-45 cells can restore their sensitivity to TGF-β growth inhibition,decrease their growth rate,reduce their cloning efficiency in soft agar and tumorigenicity in nude mice in stable transfectants,in comparison with their control MKN-45 cells.Among different RII transfectants,their difference in the changes of these parameters,as a result of the regain of autocrine negative growth control by TGF-β,is roughly proportional to their level of expression of transfected RII mRNA.From these data,it is concluded that the inactivation of TGF-β RII gene is related to the escape of growth control by TGF-β in MKN-45 cells.The importance of the study of the interplay of TGF-β and its receptor system in the negative growth control of gastric cancer,and possibly also of other cancers,is discussed.  相似文献   

12.
Cell surface activation of progelatinase A (proMMP—2) and cell migration   总被引:16,自引:1,他引:15  
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.  相似文献   

13.
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell(CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cel s harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.  相似文献   

14.
Transforming growth factor-β(TGF-β) is involved in actin cytoskeleton reorganization and tumor progression. Fascinl, an actin-binding protein, increases cell invasiveness and motility in various transformed cells. To determine whether fascinl is an important mediator of the tumor response to TGF-β, we applied the small interfering RNA (siRNA) technique to silence fascinl in gastric cancer (GC) cells MKN45. Results showed that the effects of TGF-β1 on GC cells invasion and metastasis were mediated by tumor production of fascinl; furthermore, it was found that TGF-β1- induced fascinl expression was suppressed by the specific inhibitors of JNK and ERK pathways, SP6001125 and PD98059, respectively, but not by transient transfection of Smad2 and Smad4 siRNA. Our data for the first time demonstrated that fascin 1 is an important mediator of TGF-β1-induced invasion and metastasis of GC cells, which involves JNK and ERK signaling pathways.  相似文献   

15.
Cell migration and invasion are two essential processes during cancer metastasis. Increasing evidence has shown that the Piezo1 channel is involved in mediating cell migration and invasion in some types of cancers. However, the role of Piezo1 in the breast cancer and its underlying mechanisms have not been clarified yet. Here, we show that Piezo1 is high-expressed in breast cancer cell (BCC) lines, despite its complex expression in clinical patient database. Piezo1 knockdown (Piezo1-KD) promotes unconfined BCC migration, but impedes confined cell migration. Piezo1 may mediate BCC migration through the balances of cell adhesion, cell stiffness, and contractility. Furthermore, Piezo1-KD inhibits BCC invasion by impairing the invadopodium formation and suppressing the expression of metalloproteinases (MMPs) as well. However, the proliferation and cell cycle of BCCs are not significantly affected by Piezo1. Our study highlights a crucial role of Piezo1 in regulating migration and invasion of BCCs, indicating Piezo1 channel might be a new prognostic and therapeutic target in BCCs.  相似文献   

16.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

17.
《遗传学报》2021,48(7):571-581
Small cell lung cancer (SCLC) is the most aggressive lung cancer with high heterogeneity.Mouse SCLC cells derived from the Rb1~(L/L)/Trp53~(L/L)(RP) autochthonous mouse model grew as adhesion or suspension in cell culture,and the adhesion cells are defined as non-neuroendocrine (non-NE) SCLC cells.Here,we uncover the heterogenous subpopulations within the non-NE cells and referred to them as mesenchymallike (Mes) and epithelial-like (Epi) SCLC cells.The Mes cells have increased capability to form colonies in soft agar and harbored stronger metastatic capability in vivo when compared with the Epi cells.Gene Set Enrichment Analysis reveals that the transforming growth factor (TGF)-β signaling is enriched in the Mes cells.Importantly,inhibition of the TGF-β signaling through ectopic expression of dominant-negative Tgfbr2(Tgfbr2-DN) or treatment with Tgfbr1 inhibitor SD-208 consistently abrogates tumor metastasis in nude mouse allograft assays.Moreover,genetic deletion of Tgfbr2 or Smad4,the key components of the TGF-β signaling pathway,dramatically attenuates SCLC metastasis in the RP autochthonous mouse model.Collectively,our results uncover the high heterogeneity in non-NE SCLC cells and highlight an important role of TGF-β signaling in promoting SCLC metastasis.  相似文献   

18.
Lin PH  Pan Z  Zheng L  Li N  Danielpour D  Ma JJ 《Cell research》2005,15(3):160-166
NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.  相似文献   

19.
20.
The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号