首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distant hybridization leads to different ploidy fishes   总被引:3,自引:0,他引:3  
Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (♀)×common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (♂), and RCC (2n=100) (♀)×blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (♂) are described. In the distant hybridization of RCC (♀)×CC (♂), bisexual fertile F3–F18 allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (♀)×BSB (♂), different ploidy fishes were obtained, including diploid bisexual fertile natural gynogenetic fish (2n=100), sterile triploid hybrids (3n=124), and bisexual fertile tetraploid hybrids (4n=148). Furthermore, two kinds of pentaploid hybrids (5n=172 and 5n=198) were formed. The biological characteristics and the mechanisms of formation of the different ploidy fish were compared and discussed at the cellular and molecular level. The results indicated distant hybridization or the combination of this method with gynogenesis or androgenesis affects the formation of different ploidy fish with genetic variation.  相似文献   

2.
Distant hybridization refers to crosses between two different species or higher-ranking taxa that enables interspecific genome transfer and leads to changes in phenotypes and genotypes of the resulting progeny. If progeny derived from distant hybridization are bisexual and fertile, they can form a hybrid lineage through self-mating, with major implications for evolutionary biology, genetics, and breeding. Here, we review and summarize the published literature, and present our results on fish distant hybridization. Relevant problems involving distant hybridization between orders, families, subfamilies, genera, and species of animals are introduced and discussed, with an additional focus on fish distant hybrid lineages, genetic variation, patterns, and applications. Our review serves as a useful reference for evolutionary biology research and animal genetic breeding.  相似文献   

3.
The genus Leishmania includes many pathogenic species which are genetically very distant. The possibility of genetic exchange between different strains is still an important and debated question. Very few genetic hybrids (i.e., offspring of genetically dissimilar species) have been described in Leishmania. In this study, we report the first example of genetic hybrids occurring between two divergent Leishmania species, Leishmania infantum and Leishmania major. These two species have distinct geographical distributions and are transmitted by different vector species to different mammalian reservoir hosts. These hybrid strains were isolated in Portugal from immunocompromised patients and characterized by molecular and isoenzymatic techniques. These approaches showed that these chimeric strains probably contained the complete genome of both L. major and L. infantum. We believe this is the first report of genetic hybrids between such phylogenetically and epidemiologically distant species of Leishmania. This raises questions about the frequency of such cross-species genetic exchange in natural conditions, modalities of hybrid transmission, their long term maintenance as well as the consequences of these transfers on phenotypes such as drug resistance or pathogenicity.  相似文献   

4.
Genome fingerprinting with a hypervariable minisatellite sequence of phage M13 DNA was used to study the genetic variation in individual species of the genera Bos and Bison (subfamily Bovinae) and in their interspecific and intergeneric hybrids. DNA fingerprints were obtained for domestic cow Bos taurus primigenius, vatussy Bos taurus macroceros, banteng Bos javanicus, gaur Bos gaurus, wisent Bison bonasus, bison Bison bison, and for the interspecific and intergeneric hybrids. Compared with the original species, most hybrids showed a greater variation in number and size of hybridization fragments. An association was revealed between the number of hybridization fragments and blood composition of interspecific hybrids resulting from unique crossing of domestic cow and banteng. Pairwise similarity coefficients were calculated to construct a dendrogram of genetic similarity, which reflected the relationships between the parental species and hybrids varying in blood composition. The applicability of the method for identifying interspecific and intergeneric hybrids and for studying the consequences of distant hybridization in the subfamily Bovinae is discussed.  相似文献   

5.
Gene exchange among oak species ( Quercus ) in Europe is known to be pervasive and to complicate population genetic studies of this species complex. A study in this issue of Molecular Ecology adds geographical and stand-level resolution to the patterns of genetic variation among four species and documents the relatively high frequency of hybrids (10.7–30.5% of trees in a population, including hybrids between all pairs of species; Lepais et al . 2009 ). In addition, the authors show that the relative abundance of parental species affects the genetic composition of hybrids and shifts the average direction of introgression. Variation in the relative abundance of parental species is one example of how the ecological context of hybridization can influence the dynamics and outcome of contact between species and represents an opportunity to investigate the components of reproductive isolation between species. This research raises several questions about the dynamics of hybridization in this well-studied species complex, and highlights methodological and conceptual issues associated with contemporary research on hybridization.  相似文献   

6.
To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly different communities. Second, species richness was significantly greatest on hybrids (F1 > F2 > E. amygdalina > E. risdonii). These results are similar to those from a wild population of the same species and represent the first case in which both synthetic and wild population studies confirm a genetic component to community structure. Hybrids also acted as centers of biodiversity by accumulating both the common and specialist taxa of both parental species (100% in the wild and 80% in the synthetic population). Third, species richness was significantly greater on F1s than the single F2 family, suggesting that the increased insect abundance on hybrids may not be caused by the breakup of coadapted gene complexes. Fourth, specialist arthropod taxa were most likely to show a dominance response to F1 hybrids, whereas generalist taxa exhibited a susceptible response. Fifth, in an analysis of 31 leaf terpenoids that are thought to play a role in plant defense, hybrids were generally intermediate to the parental chemotypes. Within the single F2 family, we found significant associations between the communities of individual trees and five individual oil components, including oil yield, demonstrating that there is a genetic effect on plant defensive chemistry that, in turn, may affect community structure. These studies argue that hybridization has important community-level consequences and that the genetic variation present in hybrid zones can be used to explore the genetic-based mechanisms that structure communities.  相似文献   

7.
Conservation Implications of Invasion by Plant Hybridization   总被引:12,自引:0,他引:12  
The increasing number of invasive exotic plant species in many regions and the continuing alteration of natural ecosystems by humans promote hybridization between previously allopatric species; among both native as well as between native and introduced species. We review the ecological factors and mechanisms that promote such hybridization events and their negative consequences on biological diversity. Plant invasions through hybridization may occur in four different ways: hybridization between native species, hybridization between an exotic species and a native congener, hybridization between two exotics and by the introduction and subsequent spread of hybrids. The main harmful genetic effect of such hybrids on native species is the loss of both genetic diversity and of locally adapted populations, such as rare and threatened species. The spread of aggressive hybrid taxa can reduce the growth of, or replace, native species. The main factor promoting the formation of hybrids is species dispersal promoted by humans. However, the success and spread of hybrids is increased by disturbance and fragmentation of habitats, thus overcoming natural crossing barriers, and range expansions due to human activity. There are differences in flowering, pollination and seed dispersal patterns between parental species and hybrids. Hybrid resistance to pathogens and herbivores may also enhance the success of hybrids. To predict the mechanisms and consequences of invasions mediated by hybridization, extensive data on hybrid ecology and biology are needed, as well as carefully designed field experiments focused on the comparative ecology of parental populations and hybrids.  相似文献   

8.
9.
Murata Y  Oda S  Mitani H 《PloS one》2012,7(5):e36875
Variations in allele expressions between genetically distant populations are one of the most important factors which affects their morphological and physiological variations. These variations are caused by natural mutations accumulated in their habitats. It has been reported that allelic expression differences in the hybrids of genetically distant populations are different from parental strains. In that case, there is a possibility that allelic expression changes lead to novel phenotypes in hybrids. Based on genomic information of the genetically distant populations, quantification and comparison of allelic expression changes make importance of regulatory sequences (cis-acting factors) or upstream regulatory factors (trans-acting modulators) for these changes clearer. In this study, we focused on two Medaka inbred strains, Hd-rR and HNI, derived from genetically distant populations and their hybrids. They are highly polymorphic and we can utilize whole-genome information. To analyze allelic expression changes, we established a method to quantify and compare allele-specific expressions of 11 genes between the parental strains and their reciprocal hybrids. In intestines of reciprocal hybrids, allelic expression was either similar or different in comparison with the parental strains. Total expressions in Hd-rR and HNI were tissue-dependent in the case of HPRT1, with high up-regulation of Hd-rR allele expression in liver. The proportion of genes with differential allelic expression in Medaka hybrids seems to be the same as that in other animals, despite the high SNP rate in the genomes of the two inbred strains. It is suggested that each tissue of the strain difference in trans-acting modulators is more important than polymorphisms in cis-regulatory sequences in producing the allelic expression changes in reciprocal hybrids.  相似文献   

10.
江静  钱前  马伯军  高振宇 《遗传》2014,36(5):469-475
天然植物群体中存在着大量的遗传变异, 包括遗传物质改变和表观遗传变异, 它们是物种赖以生存和进化的源泉。表观遗传变异不涉及DNA序列的改变或者蛋白表达的变化, 但可以通过有丝分裂和(或)减数分裂实现世代间的稳定遗传。文章主要从表观遗传变异的重要来源--植物远缘杂交及多倍体化、环境中各种生物和非生物胁迫两方面, 总结了表观遗传在作物改良中的应用, 分析了它的局限性和存在的问题, 并且提出了相应的解决方法。  相似文献   

11.
植物体细胞杂交及其杂种鉴定方法研究进展   总被引:5,自引:0,他引:5  
植物体细胞杂交使远缘杂交不亲和的植物有可能实现遗传物质重组,创造和培养植物新品种乃至新物种,尤其在多基因控制农艺性状的改良上具有较大优势.随着原生质体融合技术和现代分子生物学的发展,体细胞融合再生植株的植物种属范围不断扩大,杂种鉴定的方法和手段也有了很大提高.本文就近年来植物体细胞杂交的技术手段、筛选体系和杂种检测方法进行了综述,并展望了其应用和发展前景.  相似文献   

12.
Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.  相似文献   

13.
Areas of geographic overlap between potentially hybridizing species provide the opportunity to study interspecific gene flow and reproductive barriers. Here we identified hybrids between Picea engelmannii and P. glauca by their genetic composition at 17 microsatellite markers, and determined the broad-scale geographic distribution of hybrids in the central Rocky Mountains of North America, a geographic region where hybrids and isolation between species had not previously been studied. Parameter estimates from admixture models revealed considerable variation in ancestry within and among collection sites, suggesting that within this area of geographic overlap, the interaction of the two species varies extensively. The results document a previously unrecognized patchy distribution of hybrids between P. engelmannii and P. glauca, including locations where hybrids were not known or expected to exist. Further, the ancestry of many hybrids was consistent with multiple generations of hybridization, with probable directional backcrossing to P. engelmannii, suggesting a relatively porous species boundary. The identification and characterization of hybridization between these spruce in this region raises the question of what factors maintain barriers to gene flow in these long-lived forest trees. The current research lays the groundwork for future study of the ecological and evolutionary contexts of their hybridization, as well as of differential introgression and permeability of species boundaries.  相似文献   

14.
植物分子生态学进展(Ⅰ)—遗传结构和杂交   总被引:2,自引:0,他引:2  
从物种遗传结构和杂交的角度介绍了当前植物分子生态学研究的新进展。对于物种遗传结构,文章分析了物种生物学特性、生态因子对它的影响,强调了种群不同世代遗传结构研究的重要性。而在杂交研究领域,文章揭示了分子生物学手段有着比传统形态分析方法更多的优越性。  相似文献   

15.
QTL analysis of floral traits in Louisiana iris hybrids   总被引:2,自引:0,他引:2  
The formation of hybrid zones between nascent species is a widespread phenomenon. The evolutionary consequences of hybridization are influenced by numerous factors, including the action of natural selection on quantitative trait variation. Here we examine how the genetic basis of floral traits of two species of Louisiana Irises affects the extent of quantitative trait variation in their hybrids. Quantitative trait locus (QTL) mapping was used to assess the size (magnitude) of phenotypic effects of individual QTL, the degree to which QTL for different floral traits are colocalized, and the occurrence of mixed QTL effects. These aspects of quantitative genetic variation would be expected to influence (1) the number of genetic steps (in terms of QTL substitutions) separating the parental species phenotypes; (2) trait correlations; and (3) the potential for transgressive segregation in hybrid populations. Results indicate that some Louisiana Iris floral trait QTL have large effects and QTL for different traits tend to colocalize. Transgressive variation was observed for six of nine traits, despite the fact that mixed QTL effects influence few traits. Overall, our QTL results imply that the genetic basis of floral morphology and color traits might facilitate the maintenance of phenotypic divergence between Iris fulva and Iris brevicaulis, although a great deal of phenotypic variation was observed among hybrids.  相似文献   

16.
Environmental gradients influence the distribution and taxonomic composition of planktonic taxa, including Daphnia. In canyon-shaped reservoirs with pronounced horizontal gradients of food supply, predation pressure and other factors, not only species and interspecific hybrids but also clones within these taxa are non-randomly distributed. Using a long-term data set from a reservoir mostly dominated by a single Daphnia species, we evaluated whether intraspecific genetic differentiation can be frequently detected between upstream and downstream reservoir regions with different environmental conditions. We analysed variation at four allozyme loci (two species-specific and two polymorphic) to assess the taxonomic composition and intraspecific variation of Daphnia collected in different years (between 1995 and 2005) and periods of the growing season. D. galeata dominated in all samples, although other species and hybrids with D. galeata were also occasionally detected. Despite limited variation at the analysed loci, D. galeata from upstream and downstream regions were significantly genetically differentiated on seven out of twelve sampling dates. Although genetic drift in geographically distant subpopulations may contribute to differentiation, we presume that the observed patterns are primarily due to different selection regimes. We predict that a significant genetic differentiation within planktonic populations also occurs more frequently in natural water bodies.  相似文献   

17.
Chung MY  Nason JD  Chung MG 《Molecular ecology》2005,14(14):4389-4402
We investigated the potential for gene flow and genetic assimilation via hybridization between common and rare species of the terrestrial orchid genus Liparis, focusing specifically on sympatric and allopatric populations of the common Liparis kumokiri and the rare Liparis makinoana. We utilized analyses of genetic diversity, morphology, and the spatial distributions of individuals and genotypes to quantify the dynamics of interspecific gene flow at within- and among-population scales. High levels of allozyme genetic diversity (HE) were found in populations of the rare L. makinoana (0.317), whereas the common L. kumokiri (N = 1744 from 14 populations) revealed a complete lack of variation. This contrast may reflect different breeding systems and associated rates of genetic drift (L. makinoana is self-incompatible, whereas L. kumokiri is self-compatible). At the two known sympatric sites, individuals were found that recombined parental phenotypes, possessing floral characteristics of L. kumokiri and vegetative characteristics of L. makinoana. These putative hybrids were the only individuals found segregating alleles diagnostic of both parental species. Analysis of these individuals indicated that hybrid genotypes were skewed towards L. kumokiri and later generation recombinants of L. kumokiri at both sympatric sites. Furthermore, Ripley's bivariate L(r) statistics revealed that at one site these hybrids are strongly spatially clustered with L. kumokiri. Nonetheless, the relatively low frequency of hybrids, absence of ongoing hybridization (no F1s or first generation backcrossess), and strong genetic differentiation between morphologically 'pure' parental populations at sympatric sites (FST = 0.708-0.816) indicates that hybridization was not an important bridge for gene flow. The results from these two species suggest that natural hybridization has not played an important role in the diversification of Liparis, but instead support the view that genetic drift and limited gene flow are primarily responsible for speciation in Liparis. Based on genetic data and current status of the species, implications of the research for conservation are considered to provide guidelines for appropriate conservation and management strategies.  相似文献   

18.
Several authors have postulated that genetic divergence between populations could result in genomic incompatibilities that would cause an increase in transposition in their hybrids, producing secondary effects such as sterility and therefore starting a speciation process. It has been demonstrated that transposition largely depends on intraspecific hybridization for P, hobo, and I elements in Drosophila melanogaster and for several elements, including long terminal repeat (LTR) and non-LTR retrotransposons, in D. virilis. However, in order to demonstrate the putative effect of transposable elements on speciation, high levels of transposition should also be induced in hybrids between species that could have been originated by this process and that are still able to interbreed. To test this hypothesis, we studied the transposition of the LTR retrotransposon Osvaldo in Drosophila buzzatii-Drosophila koepferae hybrids. We used a simple and robust experimental design, analyzing large samples of single-pair mate offspring, which allowed us to detect new insertions by in situ hybridization to polytene chromosomes. In order to compare transposition rates, we also used a stock recently obtained from the field and a highly inbred D. buzzatii strain. Our results show that the transposition rate of Osvaldo is 10(-3) transpositions per element per generation in all nonhybrid samples, very high when compared with those of other transposable elements. In hybrids, the transposition rate was always 10(-2), significantly higher than in nonhybrids. We show that inbreeding has no effect on transposition in the strains used, concluding that hybridization significantly increases the Osvaldo transposition rate.  相似文献   

19.
从胚拯救、体细胞杂交、体细胞无性系变异和基因工程4方面综述了现代生物技术在油菜种质创新中所取得的成绩.胚挽救技术主要用于克服远缘杂交受精后的不亲和,提高获得杂种的频率;体细胞杂交由于绕过有性杂交不亲和障碍,扩大了杂交范围;基因工程技术借助分子操作技术,达到定向改变目标生物遗传物质的目的,拓宽其种质资源.另外,对限制生物技术在油菜种质创新中的一些因素和其发展前景进行了讨论.  相似文献   

20.
Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, Pinus torreyana Parry, is one of the rarest pines in the world, restricted to one mainland and one island population. Morphological differentiation between island and mainland populations suggests adaptation to local environments may have contributed to trait variation. The distribution of phenotypic variances within the common garden suggests distinct population‐specific growth trajectories underlay genetic differences, with the island population exhibiting substantially reduced genetic variance for growth relative to the mainland population. Furthermore, F1 hybrids, representing a cross between mainland and island trees, exhibit increased height accumulation and fecundity relative to mainland and island parents. This may indicate genetic rescue via intraspecific hybridization could provide the necessary genetic variation to persist in environments modified as a result of climate change. Long‐term common garden experiments, such as these, provide invaluable resources to assess the distribution of genetic variance that may inform conservation strategies to preserve evolutionary potential of rare species, including genetic rescue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号