首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Objective

To investigate if magnetic resonance spectroscopy (MRS) is the best Magnetic Resonance (MR)-based method when compared to gradient-echo magnetic resonance imaging (MRI) for the detection and quantification of liver steatosis in diabetic patients in the clinical practice using liver biopsy as the reference standard, and to assess the influence of steatohepatitis and fibrosis on liver fat quantification.

Methods

Institutional approval and patient consent were obtained for this prospective study. Seventy-three patients with type 2 diabetes (60 women and 13 men; mean age, 54±9 years) underwent MRI and MRS at 3.0 T. The liver fat fraction was calculated from triple- and multi-echo gradient-echo sequences, and MRS data. Liver specimens were obtained in all patients. The accuracy for liver fat detection was estimated by receiver operator characteristic (ROC) analysis, and the correlation between fat quantification by imaging and histolopathology was analyzed by Spearman''s correlation coefficients.

Results

The prevalence of hepatic steatosis was 92%. All gradient-echo MRI and MRS findings strongly correlated with biopsy findings (triple-echo, rho = 0.819; multi-echo, rho = 0.773; MRS, rho = 0.767). Areas under the ROC curves to detect mild, moderate, and severe steatosis were: triple-echo sequences, 0.961, 0.975, and 0.962; multi-echo sequences, 0.878, 0.979, and 0.961; and MRS, 0.981, 0.980, and 0.954. The thresholds for mild, moderate, and severe steatosis were: triple-echo sequences, 4.09, 9.34, and 12.34, multi-echo sequences, 7.53, 11.75, and 15.08, and MRS, 1.71, 11.69, and 14.91. Quantification was not significantly influenced by steatohepatitis or fibrosis.

Conclusions

Liver fat quantification by MR methods strongly correlates with histopathology. Due to the wide availability and easier post-processing, gradient-echo sequences may represent the best imaging method for the detection and quantification of liver fat fraction in diabetic patients in the clinical practice.  相似文献   

2.
Although simple steatosis was originally thought to be a pathologically inert histological change, fat accumulation in the liver may play a critical role not only in disease initiation, but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Therefore, prevention of fat accumulation in the liver may be an effective therapy for multiple stages of nonalcoholic fatty liver disease (NAFLD). Promising beneficial effects of betaine supplementation on human NAFLD have been reported in some pilot clinical studies; however, data related to betaine therapy in NAFLD are limited. In this study, we examined the effects of betaine on fat accumulation in the liver induced by high-sucrose diet and evaluated mechanisms by which betaine could attenuate or prevent hepatic steatosis in this model. Male C57BL/6 mice weighing 20 +/- 0.5 g (means +/- SE) were divided into four groups (8 mice per group) and started on one of four treatments: standard diet (SD), SD+betaine, high-sucrose diet (HS), and HS + betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Long-term feeding of high-sucrose diet to mice caused significant hepatic steatosis accompanied by markedly increased lipogenic activity. Betaine significantly attenuated hepatic steatosis in this animal model, and this change was associated with increased activation of hepatic AMP-activated protein kinase (AMPK) and attenuated lipogenic capability (enzyme activities and gene expression) in the liver. Our findings are the first to suggest that betaine might serve as a therapeutic tool to attenuate hepatic steatosis by targeting the hepatic AMPK system.  相似文献   

3.
Background and aimsHepatic steatosis is the most common histopathological finding on liver biopsy, with the most prevalent etiology being NAFLD. The pathogenesis of hepatic steatosis and NAFLD is multifactorial, however, studies on the importance of manganese in NAFLD are limited. We aimed to study hepatic manganese content, and other trace elements, in relation to hepatic steatosis in patients with chronic liver diseases of different etiology, mainly NAFLD.MethodsPatients with chronically elevated liver function tests underwent a diagnostic work-up, including routine blood tests and two liver biopsies. One of the biopsies was sent for histopathological evaluation, and the other for ultra-trace elemental determinations. Steatosis was graded using conventional histopathological methodology, and fat content was also quantitated in biopsy samples by measuring the steatotic area of the section using stereological point counting (SPC). Ultra-trace elemental analysis was utilized for determining manganese, iron, and copper using inductively coupled plasma sector field mass spectrometry (ICP-SFMS).Results76 patients were included in the study. Hepatic manganese concentrations in patients with steatosis were lower than in patients without hepatic steatosis (3.8 ± 1.1 vs. 6.4 ± 1.8, P < 0.001). Similar results were seen for blood manganese levels and hepatic steatosis. We found a strong inverse correlation between steatosis grade and hepatic manganese content (ρ=-0.743, P < 0.001). Also, low levels of manganese independently predicted the presence of steatosis (aOR 0.07 [95%CI: 0.01−0.63]).ConclusionPatients with NAFLD, or other CLD and concomitant hepatic steatosis, showed lower levels of hepatic manganese content with increasing grade of steatosis.  相似文献   

4.
Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), little is known of its pathogenesis based on study of human liver samples. By the use of Affymetrix GeneChips (17,601 genes), we investigated gene expression in the human liver of subjects with extreme steatosis due to NAFLD without histological signs of inflammation (liver fat 66.0 +/- 6.8%) and in subjects with low liver fat content (6.4 +/- 2.7%). The data were analyzed by using sequence-based reannotation of Affymetrix probes and a robust model-based normalization method. We identified genes involved in hepatic glucose and lipid metabolism, insulin signaling, inflammation, coagulation, and cell adhesion to be significantly associated with liver fat content. In addition, genes involved in ceramide signaling (MAP2K4) and metabolism (UGCG) were found to be positively associated with liver fat content. Genes involved in lipid metabolism (PLIN, ACADM), fatty acid transport (FABP4, CD36), amino acid catabolism (BCAT1), and inflammation (CCL2) were validated by real-time PCR and were found to be upregulated in subjects with high liver fat content. The data show that multiple changes in gene expression characterize simple steatosis.  相似文献   

5.
Yan H  Xia M  Chang X  Xu Q  Bian H  Zeng M  Rao S  Yao X  Tu Y  Jia W  Gao X 《PloS one》2011,6(9):e24895

Background and Aims

Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content.

Methods

A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy.

Results

Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened.

Conclusions

Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury.  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of disease ranging from simple steatosis to inflammatory steatohepatitis (NASH) with different degrees of fibrosis that can ultimately progress to cirrhosis. Accumulating evidence suggests the involvement of the endocannabinoid-system in liver disease and related complications. In particular, hepatoprotective properties for Cannabinoid Receptor type 2 (CB2) have been shown both through experimental murine models of liver injury and association study between a CB2 functional variant, Q63R, and liver enzymes in Italian obese children with steatosis.Here, in order to clarify the role of CB2 in severity of childhood NAFLD, we have investigated the association of the CB2 Q63R variant, with histological parameters of liver disease severity in 118 Italian children with histologically-proven NAFLD.CB2 Q63R genotype was assigned performing a TaqMan assay and a general linear model analysis was used to evaluate the association between the polymorphism and the histological parameters of liver damage.We have found that whereas CB2 Q63R variant is not associated with steatosis or fibrosis, it is associated with the severity of the inflammation (p = 0.002) and the presence of NASH (p = 0.02).Our findings suggest a critical role for CB2 Q63R variant in modulating hepatic inflammation state in obese children and in the consequent increased predisposition of these patients to liver damage.  相似文献   

7.

Objectives

Hepatic steatosis is associated with an increased risk of developing serious liver disease and other clinical sequelae of the metabolic syndrome. However, visual estimates of steatosis from histological sections of biopsy samples are subjective and reliant on an invasive procedure with associated risks. The aim of this study was to test the ability of a rapid, routinely available, magnetic resonance imaging (MRI) method to diagnose clinically relevant grades of hepatic steatosis in a cohort of patients with diverse liver diseases.

Materials and Methods

Fifty-nine patients with a range of liver diseases underwent liver biopsy and MRI. Hepatic steatosis was quantified firstly using an opposed-phase, in-phase gradient echo, single breath-hold MRI methodology and secondly, using liver biopsy with visual estimation by a histopathologist and by computer-assisted morphometric image analysis. The area under the receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of the MRI method against the biopsy observations.

Results

The MRI approach had high sensitivity and specificity at all hepatic steatosis thresholds. Areas under ROC curves were 0.962, 0.993, and 0.972 at thresholds of 5%, 33%, and 66% liver fat, respectively. MRI measurements were strongly associated with visual (r2 = 0.83) and computer-assisted morphometric (r2 = 0.84) estimates of hepatic steatosis from histological specimens.

Conclusions

This MRI approach, using a conventional, rapid, gradient echo method, has high sensitivity and specificity for diagnosing liver fat at all grades of steatosis in a cohort with a range of liver diseases.  相似文献   

8.
Non-alcoholic fatty liver disease (NAFLD) is becoming the main cause of liver disease in Western countries, especially in morbidly obese patients (MOPs). The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently studied because of its possible involvement in the pathogenesis of NAFLD, but its role, at least in MOPs, is still controversial. The aim of this study was to clarify the correlation between the circulating levels of the PCSK9 protein (cPCSK9) and its hepatic expression with the severity of liver damage in a population of MOPs with NAFLD undergoing bariatric surgery. PCSK9 mRNA was positively correlated with FASN, PPARγ and PPARα mRNAs, while no significant differences were found in PCSK9 mRNA expression in relation to the severity of liver steatosis, lobular inflammation and hepatocellular ballooning. In addition, hepatic PCSK9 protein expression levels were not related to histological parameters of lobular inflammation and hepatocyte ballooning, decreased significantly only in relation to the severity of hepatic steatosis, and were inversely correlated with ALT and AST serum levels. cPCSK9 levels in the whole population were associated with the severity of hepatic steatosis and were positively correlated to total cholesterol levels. In multivariate analysis, cPCSK9 levels were associated with age, total cholesterol and HbA1c. In conclusion, in MOPs our findings support a role for PCSK9 in liver fat accumulation, but not in liver damage progression, and confirm its role in the increase of blood cholesterol, which ultimately may contribute to increased cardiovascular risk in this population.  相似文献   

9.
10.
This paper is dedicated to the memory of our wonderful colleague Professor Alfredo Colonna, who passed away the same day of its acceptance. Fatty liver accumulation, inflammatory process and insulin resistance appear to be crucial in non-alcoholic fatty liver disease (NAFLD), nevertheless emerging findings pointed an important role also for iron overload. Here, we investigate the molecular mechanisms of hepatic iron metabolism in the onset of steatosis to understand whether its impairment could be an early event of liver inflammatory injury. Rats were fed with control diet or high fat diet (HFD) for 5 or 8 weeks, after which liver morphology, serum lipid profile, transaminases levels and hepatic iron content (HIC), were evaluated. In liver of HFD fed animals an increased time-dependent activity of iron regulatory protein 1 (IRP1) was evidenced, associated with the increase in transferrin receptor-1 (TfR1) expression and ferritin down-regulation. Moreover, ferroportin (FPN-1), the main protein involved in iron export, was down-regulated accordingly with hepcidin increase. These findings were indicative of an increased iron content into hepatocytes, which leads to an increase of harmful free-iron also related to the reduction of hepatic ferritin content. The progressive inflammatory damage was evidenced by the increase of hepatic TNF-α, IL-6 and leptin, in parallel to increased iron content and oxidative stress. The major finding that emerged of this study is the impairment of iron homeostasis in the ongoing and sustaining of liver steatosis, suggesting a strong link between iron metabolism unbalance, inflammatory damage and progression of disease.  相似文献   

11.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and is presently the most common chronic liver disease. However, the mechanisms underlying the development of steatosis remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a variety of biological functions. We have investigated the role of miRNA in the development of steatosis. We found that miR-467b expression is significantly downregulated in liver tissues of high-fat diet fed mice and in steatosis-induced hepatocytes. The downregulation of miR-467b resulted in the upregulation of hepatic lipoprotein lipase (LPL), the direct target of miR-467b. Moreover, the interaction between miR-467b and LPL was associated with insulin resistance, a major cause of NAFLD. These results suggest that downregulation of miR-467b is involved in the development of hepatic steatosis by modulating the expression of its target, LPL.  相似文献   

12.
Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.  相似文献   

13.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

14.
Concordant with soaring obesity rates, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. The obesity epidemic demands interventions to reverse obesity‐associated hepatic steatosis, NAFLD, and nonalcoholic steatohepatitis, and several new pharmacologic approaches have been developed within the past several years. Steatosis develops when energy delivery to the liver, modulated by rates of hepatic lipogenesis, exceeds the capacity of the liver to utilize or export this energy. Therefore, pharmacologic approaches to reverse hepatic steatosis have focused largely, though not exclusively, on (1) reducing substrate availability to the liver, (2) reducing hepatic lipid synthesis, and (3) increasing hepatic mitochondrial fat oxidation (Figure 1). This Perspective will discuss these three classes of emerging pharmacologic therapies against hepatic steatosis, with the ultimate intent to ameliorate NAFLD and/or nonalcoholic steatohepatitis, and the advantages and pitfalls afforded by each strategy to treat these epidemics of obesity‐associated liver disease.  相似文献   

15.
Objective : Circulating and adipose tissue markers of iron overload are increased in subjects with obesity. The aim is to study iron signals in adipose tissue. Methods: Adipose tissue R2* values and hepatic iron concentration (HIC) were evaluated using magnetic resonance imaging (MRI) in 23 middle‐aged subjects with obesity and 20 subjects without obesity. Results: Subcutaneous (SAT) and visceral adipose tissue (VAT) R2* were increased in subjects with obesity (P = 0.004 and P = 0.008) and correlated significantly and positively with HIC in all subjects. Strikingly, most of the associations of liver iron with metabolic parameters were replicated with SAT and VAT R2*. BMI, waist circumference, fat mass, HOMA value, and C‐reactive protein positively correlated with HIC and SAT and VAT R2*. BMI or percent fat mass (but not insulin resistance) contributed independently to 26.8‐34.8% of the variance in sex‐ and age‐adjusted SAT or VAT R2* (β > 0.40, P < 0.005). Within subjects with obesity, total cholesterol independently contributed to 14.8% of sex‐ and age‐adjusted VAT iron variance (β = 0.50, P = 0.025). Conclusions: Increased R2* in adipose tissue, which might indicate iron content, runs in parallel to liver iron stores of subjects with obesity. VAT iron seems also associated with serum cholesterol within subjects with obesity.  相似文献   

16.

Background

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model.

Methodology/Principal Findings

Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress.

Conclusions/Significance

These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.  相似文献   

17.
While non-alcoholic fatty liver disease (NAFLD) represents the common cause of chronic liver disease, specific therapies are currently unavailable. The wine industry produces millions of tons of residue (pomace), which contains high levels of bioactive phytochemicals. The aim of this study was to clarify the potential benefits of grape pomace for the treatment of NAFLD at different levels of severity, and to clarify the mechanism of action. C57Bl/6 mice were given high fat diet (HFD) or western diet (WD) as models of obesity and hepatic steatosis or steatohepatitis, respectively, with or without pomace supplementation (50–250 mg/day). Pomace inhibited food intake, and reduced serum leptin and body weight gain. Ectopic fat deposition was reduced, while white adipose tissue mass was preserved. In addition, pomace improved glucose tolerance and insulin sensitivity, prevented the development of adipose tissue inflammation, and reduced hepatic steatosis. Higher expression of genes involved in fatty acids transport and oxidation was observed in adipose tissue, while lipogenic genes were attenuated in the liver of pomace-treated mice. In WD-fed mice, pomace reduced the severity of hepatic steatosis and inflammation and improved blood lipid profile, but was ineffective in reversing hepatic damage of advanced NASH. In conclusion, pomace improved insulin sensitivity and reduced ectopic fat deposition, leading to a healthier metabolic profile. Pomace may hold the potential as a supplement with beneficial health outcomes for the prevention and treatment of hepatic steatosis and other obesity-related pathologies.  相似文献   

18.
We explored the role of the adiponutrin (PNPLA3) nonsynonymous-rs738409 single nucleotide polymorphism (SNP) in genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) and whether this SNP contributes to the severity of histological disease. Two hundred sixty-six individuals were evaluated in a case-control association study, which included 172 patients with features of NAFLD and 94 control subjects. The rs738409 G allele was significantly associated with NAFLD (P < 0.001; OR 2.8 95%, CI 1.5–5.2), independent of age, sex, body mass index (BMI), and Homeostasis Model Assessment (HOMA) index. When we tested the hypothesis of a relation between the SNP and the histological spectrum of NAFLD, a significant association was observed [chi2 19.9, degree of freedom (df): 2, P < 5 × 10−5, adjusted for HOMA and BMI]. The degree of liver steatosis, as evaluated by liver biopsy, was significantly associated with the rs738409 G allele. Patients with CC genotype showed a lower steatosis score (14.9% ± 3.9) in comparison with the CG genotype (26.3% ± 3.5) and GG genotype (33.3% ± 4.0) (P < 0.005). The proportion of the total variation attributed to rs738409 genotypes was 5.3% (β 0.23 ± 0.07; P < 0.002). Our data suggest that the rs738409 G allele is associated not only with fat accumulation in the liver but also with liver injury, possibly triggered by lipotoxicity.  相似文献   

19.
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.  相似文献   

20.
Non-alcoholic fatty liver disease (NAFLD) is an important cause of liver-related morbidity and mortality. The aim of this work was to establish and characterize a nutritional model of NAFLD in rats. Wistar or Sprague-Dawley male rats were fed ad libitum a standard diet (ST-1, 10 % kcal fat), a medium-fat gelled diet (MFGD, 35 % kcal fat) and a high-fat gelled diet (HFGD, 71 % kcal fat) for 3 or 6 weeks. We examined the serum biochemistry, the hepatic malondialdehyde, reduced glutathione (GSH) and cytokine concentration, the respiration of liver mitochondria, the expression of uncoupling protein-2 (UCP-2) mRNA in the liver and histopathological samples. Feeding with MFGD and HFGD in Wistar rats or HFGD in Sprague-Dawley rats induced small-droplet or mixed steatosis without focal inflammation or necrosis. Compared to the standard diet, there were no significant differences in serum biochemical parameters, except lower concentrations of triacylglycerols in HFGD and MFGD groups. Liver GSH was decreased in rats fed HFGD for 3 weeks in comparison with ST-1. Higher hepatic malondialdehyde was found in both strains of rats fed HFGD for 6 weeks and in Sprague-Dawley groups using MFGD or HFGD for 3 weeks vs. the standard diet. Expression of UCP-2 mRNA was increased in Wistar rats fed MFGD and HFGD for 6 weeks and in Sprague-Dawley rats using HFGD for 6 weeks compared to ST-1. The present study showed that male Wistar and Sprague-Dawley rats fed by HFGD developed comparable simple steatosis without signs of progression to non-alcoholic steatohepatitis under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号