首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
面向代谢组学的模式识别技术应用与展望   总被引:1,自引:0,他引:1  
宋凯  李霞 《生物信息学》2008,6(2):90-93
代谢组学是后基因时代新兴的一门研究生物体内所有小分子代谢物的组学学科,是系统生物学的有机组成部分。由于代谢组学是基于数据驱动的学科,因此如何有效利用数据预处理、模式识别等信息处理技术从代谢组学复杂的高维样本中挖掘深层次的“知识”是代谢组学乃至整个系统生物学的关键问题。对模式识别技术在代谢组学中的应用作了全面的综述。总结代谢组学数据特性及其对模式识别技术的特殊要求,揭示面向代谢组学的模式识别技术所遇到的困难并在此基础上提出相应的解决办法。  相似文献   

2.
代谢组学是系统生物学的重要组成部分。在众多代谢组学分析技术中,气相色谱-质谱联用(GC-MS)技术较为成熟,分辨率高、灵敏度高、重现性好,拥有大量标准质谱图数据库且成本相对低廉,很早就应用到植物代谢组学研究领域,迄今仍然是主要分析平台之一。现从GC-MS技术的核心原理、衍生化方法以及数据采集、分析和数据库等方面介绍了GC-MS植物代谢组学分析技术。同时,综述了该技术在基因功能研究、植物代谢遗传机理、植物抗逆、生物技术和生物育种中的应用。  相似文献   

3.
代谢组作为生命科学研究的5个层面(基因组、转录组、蛋白质组、代谢组和表型组)之一越来越受到科研工作者的关注。色谱–质谱联用技术由于其高分离能力、高灵敏度等优点在代谢组学(定性和定量)领域发挥重要的作用,基于色谱–质谱联用技术的代谢组学已成功应用于代谢表型差异研究、基因功能鉴定和转基因生物安全性评价等多个研究方向。本文以中国科学院遗传与发育生物学研究所代谢组学平台为例,详细介绍了现代代谢组学平台色谱–质谱联用仪器的硬件组成,以及不同技术平台在现在系统生物学研究中的具体应用。  相似文献   

4.
代谢组学是系统生物学的重要分支,因其高效、高通量等特点而广泛应用于食品科学、药物学等研究领域。本文概述了代谢组学的分离和检测技术,综述了代谢组学在乳酸菌鉴定、发酵调控、肠道菌群研究等方面中的应用,对代谢组学在乳酸菌研究中潜在的问题和未来发展趋势进行了讨论,期望为代谢组学在食品工业微生物中的应用提供参考。  相似文献   

5.
代谢组学是近几年发展起来的对某一生物或细胞所有低分子量代谢产物进行定性和定量分析的一门新学科,其研究对象主要是生物体液,研究手段主要是核磁共振和质谱。简要综述了代谢组学的概念、代谢组学在毒理学研究领域中的应用、当前代谢组学研究中存在的问题及今后的发展趋势,并探讨了代谢组学在研究毒物作用机制、药物的临床前安全性评价、确定毒物作用靶器官及器官特异性新的生物标志物中的实际应用。  相似文献   

6.
代谢组学是继基因组学、蛋白质组学、转录组学之后发展起来的一门新兴学科,是系统生物学的重要组成部分。随内外界条件的改变,生物样本(生物体、细胞和组织等)中内源性小分子代谢物的组成、含量也发生相应的变化,通过各种高通量的分析手段对生物样本进行分析,从而找出与疾病相关的生物标志物,为疾病相关机制研究提供了新的途径。疾病诊断相关生物标志物的研究是代谢组学主要应用领域之一。呼吸系统疾病是一直困扰人们健康的常见疾病,我们对近年来代谢组学在几类常见的呼吸系统疾病诊断或鉴别方面取得的进展进行简要综述。  相似文献   

7.
代谢组学是系统生物学的重要组成部分,其通过研究生物体代谢物的变化来认识生命体的生理与生化状态,从而找出其中隐藏的规律。对代谢组学的含义,研究任务进行介绍;综述代谢组学的产生和技术平台及其在植物、微生物、疾病诊断及毒物学等领域的应用,并对代谢组学的发展趋势以及面临的挑战等问题进行评述。  相似文献   

8.
代谢组研究   总被引:7,自引:0,他引:7  
唐惠儒  王玉兰 《生命科学》2007,19(3):272-280
代谢是生命活动中所有(生物)化学变化的总称。代谢活动是生命活动的本质特征和物质基础。代谢组是生物体内源性代谢物质的动态整体。代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学。系统生物学研究的本质就是要求对研究对象的相关分子机理进行定量、普适、整体和可预测性地认识。作为全局系统生物学的基础和系统生物学的一个重要组成部分,代谢组学是以物理学基本原理为基础的分析化学、以数学计算与建模为基础的化学计量学和以生物化学为基础的生命科学等学科交叉的学科。在过去七年多的时间里,这门新兴的学科得到了迅速的发展,并已广泛地应用到了分子病理学、毒理学、功能基因组学、临床医学和环境科学等领域。本文就代谢组学的本质、代谢组分析研究方法及其应用做了概述。  相似文献   

9.
脂质组学在医药研究中的应用   总被引:2,自引:0,他引:2  
脂质组学是对整体脂质进行系统分析的一门新兴学科,通过比较不同生理状态下脂代谢网络的变化,进而识别代谢调控中关键的脂生物标志物,最终揭示脂质在各种生命活动中的作用机制。电喷雾电离-质谱技术是脂质组学领域中最核心的研究手段,目前已能对各种脂质尤其是磷脂进行高分辨率、高灵敏度、高通量的分析。随着质谱技术的进步,脂质组学在疾病脂生物标志物的识别、疾病诊断、药物靶点及先导化合物的发现和药物作用机制的研究等方面已展现出广泛的应用前景。  相似文献   

10.
生态代谢组学研究进展   总被引:7,自引:1,他引:6  
赵丹  刘鹏飞  潘超  杜仁鹏  葛菁萍 《生态学报》2015,35(15):4958-4967
代谢组学指某一生物系统中产生的或已存在的代谢物组的研究,以质谱和核磁共振技术为分析平台,以信息建模与系统整合为目标。随着代谢组学中的研究方法与技术成为生态学研究的有力工具,生态代谢组学概念应运而生,即研究某一个生物体对环境变化的代谢物组水平的响应。理清代谢组学与生态代谢组学学科发展的脉络,综述代谢组学研究中的常用技术及其优势与局限性,论述代谢组学技术在生态学研究中的应用现状,展望代谢组学技术与其他系统生物学组学技术的结合在生态学中的应用前景,提出生态代谢组学研究者未来要完成的任务和面对的挑战。  相似文献   

11.
代谢组学作为系统生物学的一个分支,已被广泛应用到各个研究领域。本文主要简述了代谢组学技术及其在茶叶研究方面的应用:生长发育、茶树品种及产地溯源、加工过程在线检测、茶类判别分析、茶叶等级及质量评价、茶叶年份与季节预测等。最后,提出了利用代谢组学技术进行茶叶功能基因组学研究的必要性和可能性。  相似文献   

12.
刘宏有  陈柳龙  高江涛 《菌物学报》2019,38(12):2078-2086
代谢组学是利用现代分析化学手段对一定条件下生物体内小分子代谢产物(初级和次级代谢产物)定性及定量,从而揭示生命现象及其内在规律的学科。相对于基因组、转录组和蛋白质组,代谢组是一定条件下生物学过程完成后的最终代谢产物的集合,因而是各种组学研究中最接近表型的一种组学,可以直接动态地反映出细胞的生理生化过程,从而有效地检测和发现特定的生化途径,准确地解释生理或者病理现象。代谢组学作为系统生物学中基因组学、转录组学以及蛋白质组学三大组学的延伸和补充,是目前的研究热点之一。目前代谢组学在真菌领域的研究得到日益重视和发展。本文首先从历史发展和技术路线简述了代谢组学的发展历程和常见的代谢组学研究方法。接着从真菌的分类鉴定、生物膜研究、代谢途径、代谢工程、天然产物发现与植物互作这6个方面介绍了代谢组学在真菌研究领域的应用。  相似文献   

13.
乳酸菌代谢组学研究进展   总被引:2,自引:0,他引:2  
代谢组学作为系统生物学的重要分支,近年来在微生物研究领域受到广泛关注,并取得了重要进展。目前乳酸菌代谢组学正日益成为研究的热点,就乳酸菌代谢组学研究中有关样品的制备、分析鉴定和数据分析等涉及的主要方法进行概述,并介绍一些乳酸菌代谢组学应用的典型实例,对乳酸菌代谢组学研究中潜在的问题和未来发展趋势进行讨论。  相似文献   

14.
郑小梅  郑平  孙际宾 《生物工程学报》2019,35(10):1955-1973
工业生物技术是以微生物细胞工厂利用可再生的生物原料来生产能源、材料与化学品等的生物技术,在解决资源、能源与环境等问题方面起着越来越重要的作用。系统生物学是全面解析微生物细胞工厂及其发酵过程从"黑箱"到"白箱"的重要研究方法。系统生物学借助基因组、转录组、蛋白质组、代谢组以及代谢流组等多组学数据,可解析微生物细胞工厂在RNA、蛋白与代谢物等不同水平上的变化规律与调控机制。目前,系统生物学在微生物细胞工厂的设计创建与发酵工艺优化中起着越来越重要的指导作用,许多成功应用实例不断涌现,推动着工业生物技术的快速发展。文中重点综述基因组、转录组、蛋白质组、代谢组与代谢流组以及基因组规模的网络模型等各组学技术的最新发展及其在工业生物技术尤其是菌株改造与发酵优化中的应用,并就工业生物技术中系统生物学的未来发展方向进行展望。  相似文献   

15.
李灏  姜颖  贺福初 《遗传》2008,30(4):389-399
在后基因组时代, 系统生物学研究成为人们关注的焦点。转录组学、蛋白质组学等功能基因组学研究方法可同时检测药物或其他因素影响下大量基因或蛋白质的表达变化情况, 但这些变化不能与生物学功能的变化建立直接联系。代谢组学方法则可为代谢物含量变化与生物表型变化建立直接相关性。代谢组学研究的目的是定量分析一个生物系统内所有代谢物的含量, 进行全面代谢物分析需要分析化学技术的支撑, 核磁共振和基于质谱的分析技术是代谢组学研究的两种主要技术手段。代谢组学研究可产生大量数据信息, 对这些数据进行分析离不开化学统计学的应用, 比如主成分分析、多维缩放、各种聚类分析技术以及功能差异分析等。文章综述了近年来代谢组学分析技术及数据分析技术的研究进展, 在此基础上, 对代谢组学在临床研究及临床前研究中的应用研究进展进行了综述。对疾病代谢表型图谱的研究有助于人们了解疾病发生、发展以及致死的机制; 在临床条件下, 这些代谢图谱可以作为疾病诊断、预后以及治疗的评判标准。代谢物组成的变化是毒物胁迫对机体造成的最终影响, 利用代谢组技术可以直接反映毒物对机体的影响。质谱技术、核磁共振技术的应用使得药物筛选过程可以快速完成, 并有助于实现个性化用药。此外, 利用代谢组学技术还可以进行已知酶的新活性研究, 也可以研究未知酶。  相似文献   

16.
介绍代谢组学的研究技术,主要包括核磁共振技术,色谱-质谱联用技术,同时介绍常用的数据处理方法和数据库.对目前代谢组学在医药领域、生物研究领域、资源环境,以及农业和食品领域的应用情况进行综述.  相似文献   

17.
转录组学作为系统生物学的一个分支,可以从整体水平上反映细胞或组织中基因的表达情况及其调控规律,已被广泛应用于各个研究领域。本文主要简述了转录组学研究技术及其在茶树次生代谢物、茶树抗逆、特异茶树资源以及茶树其它部位研究四个方面的应用,最后展望了转录组学技术在茶树功能基因发掘和代谢途径探索中的应用前景。  相似文献   

18.
代谢组学可以系统性地研究生物体受到扰动或干预后整体代谢水平的变化。文章概述了代谢组学技术的生物样品采集与制备、分析技术、数据处理与统计分析、差异代谢物结构鉴定与代谢通路分析等方法与步骤及其在营养学研究领域中的应用,展望了代谢组学技术在营养学研究领域的应用前景,以期为下一步的研究提供参考。  相似文献   

19.
代谢组学:一个迅速发展的新兴学科   总被引:35,自引:0,他引:35  
对代谢组学的含义,中心任务,研究方法,样品要求,应用及其发展方向进行了简要综述. 系统生物学概念的诞生标志着研究哲学由“还原论”向“整体论”的变化. 系统生物学的中心任务就是要针对生物系统整体 (无论它是生物细胞,多细胞组织,器官还是生物整体),建立定量,普适,整体和可预测 (QUIP) 的认知. 具体而言,系统生物学研究就是要将给定生物系统的基因,转录,蛋白质和代谢水平所发生的事件,相关性及其对所涉及生物过程的意义进行整体性认识. 从而出现了许多的“组”和“组学”的新概念. 但是现已提出的一百多个“组”和“组学”,可以大体归纳为“基因组”/“基因组学”,“转录组”/“转录组学”,“蛋白质组”/“蛋白质组学”和“代谢组”/“代谢组学”四个方面. 显而易见,DNA,mRNA 以及蛋白质的存在为生物过程的发生提供了物质基础 (但这个过程有可能不发生!),而代谢物质所反映的是已经发生了的生物学事件. 因此代谢组学是对一个生物系统进行全面认识的不可缺少的一部分,是全局系统生物学 (global systems biology) 的重要基础,也是系统生物学的一个重要组成部分. 在现有的英文表述中,代谢组学同时存在两个不同的词汇和概念,即metabonomics 和 metabolomics. 尽管前者多用在动物系统而后者多用于植物和微生物系统,但这些概念的本质从他们的定义中能够得到较细致的了解. Metabonomics 的最初定义是就生物系统对生理和病理刺激以及基因改变的代谢应答的定量测定(“the quantitative measurement of the multi-parametric metabolic response of living systems to pathophysiological stimuli or geneticmodifications”). 我们认为这个定义现在可以更广泛地表述为:代谢组学是关于定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学 (“Metabonomics is the branch of science concerned with the quantitative understandings of themetabolite complement of integrated living systems and its dynamic responses to the changes of both endogenous factors (such asphysiology and development) and exogenous factors (such as environmental factors and xenobiotics).”). 其中心任务包括 (1) 对内源性代谢物质的整体及其动态变化规律进行检测,量化和编录,(2) 确定此变化规律和生物过程的有机联系. Metabolomics 存在多个定义,但其精髓是:对一个生物系统的细胞在给定时间和给定条件下所有小分子代谢物质的定量分析(the quantitativemeasurement of all low molecular weight metabolites in an organism's cells at a specified time under specific environmentalconditions). 因此,metabolomics 可以译作“代谢物组学”. 不难看出,前者是对生物系统进行的整体和动态的认识 (不仅关心代谢物质的整体也关注其动态变化规律),而后者强调分析而且是个静态的认识概念. 因此可以认为,metabolomics 是metabonomics 的一个组成部分 (参看定义). 近年又有人提出了“dynamic metabolomics”的概念,这个概念所表达的含义十分接近“metabonomics”本身的含义. 所以,可以预见,随着这门新兴学科的发展和更深入讨论,这两个概念必将趋向一致. 因此我们建议,在中文表述中将“代谢组学”一词和英文中的 metabonomics 相对应,以避免不必要的混淆和争议. 就细胞系统而言,不仅存在细胞自身的代谢物质组成问题,存在细胞之间代谢物质交换的问题,也存在代谢过程所发生的位点问题. 因此,简单地分析代谢物质的总组成 (即代谢组) 缺乏“整体论”所要求的全面性,其意义有一定局限. 代谢组学属于全局系统生物学 (Global systems biology) 研究方法,便于对复杂体系的整体进行认识. 譬如,一个正常工作的人体包括“人体”本身和与之共同进化而来且共生的消化道微生物群体 (或称菌群),孤立地研究“人体”本身的基因,转录子以及蛋白质当然可以为人们认识人体生物学提供重要信息,但无法提供使人体正常工作不可缺少的菌群的信息. 人体血液和尿液的代谢组却携带着包括菌群在内的每一个细胞的信息,因此代谢组学方法对研究如人体这样复杂的进化杂合体十分有效. 正因如此,代谢组学已经广泛地应用到了包括药物研发,分子生理学,分子病理学,基因功能组学,营养学,环境科学等重要领域. 在代谢组学诞生的过去 6 年里,有关代谢组学的研究论文和专利以指数的形式逐年增长. 可以预见,这门新兴学科将应用到更为广泛的领域.  相似文献   

20.
《生命科学研究》2017,(6):558-564
基于稳定同位素示踪的代谢组学不仅能检测疾病发生发展及治疗过程中相关代谢物的变化,还可以对生物体系的代谢物进行定量分析并描述代谢特性。目前,稳定同位素示踪的代谢组学技术可在受试者体内直接追踪到代谢网络的单个原子,更有利于发现与疾病病因和诊断及药物疗效评估相关的生物标志物。现就稳定同位素示踪代谢组学在临床研究中的应用做简要概述,以期为将来更好地开展代谢组学在临床方面的研究提供重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号