首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA silencing technology has become the tool of choice for inducing resistance against viruses in plants. A significant discovery of this technology is that double-stranded RNA (dsRNA), which is diced into small interfering RNAs (siRNAs), is a potent trigger for RNA silencing. By exploiting this phenomenon in transgenic plants, it is possible to confer high level of virus resistance by specific targeting of cognate viral RNA. In order to maximize the efficiency and versatility of the vector-based siRNA approach, we have constructed a chimeric expression vector containing three partial gene sequences derived from the ORF2 gene of Potato virus X, Helper Component Protease gene of Potato virus Y and Coat protein gene of Potato leaf roll virus. Solanum tuberosum cv. Desiree and Kuroda were transformed with this chimeric gene cassette via Agrobacterium tumefaciens-mediated transformation and transgenic status was confirmed by PCR, Southern and double antibody sandwich ELISA detection. Due to simultaneous RNA silencing, as demonstrated by accumulation of specific siRNAs, the expression of partial triple-gene sequence cassette depicted 20% of the transgenic plants are immune against all three viruses. Thus, expression of a single transgene construct can effectively confer resistance to multiple viruses in transgenic plants.  相似文献   

3.
Plants can attenuate the replication of plant viruses and viroids by RNA silencing induced by virus and viroid infection. In higher plants, silencing signals such as small interfering RNAs (siRNAs) produced by RNA silencing can be transported systemically through phloem, so it is anticipated that antiviral siRNA signals produced in a stock would have the potential to attenuate propagation of viruses or viroids in the scion. To test whether this is indeed the case, we prepared transgenic tobacco (Nicotiana benthamiana) expressing a hairpin RNA (hpRNA) of Potato spindle tuber viroid (PSTVd) in companion cells by using a strong companion cell-specific promoter. A grafting experiment of the wild type tobacco scion on the top of the transgenic tobacco stock revealed that accumulation of PSTVd challenge-inoculated into the scion was apparently attenuated compared to the control grafted plants. These results indicate that genetically modified rootstock expressing viroid-specific siRNAs can attenuate viroid accumulation in a non-genetically modified scion grafted on the stock.  相似文献   

4.
Artificial microRNA-mediated virus resistance in plants   总被引:11,自引:1,他引:11       下载免费PDF全文
Qu J  Ye J  Fang R 《Journal of virology》2007,81(12):6690-6699
RNA silencing in plants is a natural defense system against foreign genetic elements including viruses. This natural antiviral mechanism has been adopted to develop virus-resistant plants through expression of virus-derived double-stranded RNAs or hairpin RNAs, which in turn are processed into small interfering RNAs (siRNAs) by the host's RNA silencing machinery. While these virus-specific siRNAs were shown to be a hallmark of the acquired virus resistance, the functionality of another set of the RNA silencing-related small RNAs, microRNAs (miRNAs), in engineering plant virus resistance has not been extensively explored. Here we show that expression of an artificial miRNA, targeting sequences encoding the silencing suppressor 2b of Cucumber mosaic virus (CMV), can efficiently inhibit 2b gene expression and protein suppressor function in transient expression assays and confer on transgenic tobacco plants effective resistance to CMV infection. Moreover, the resistance level conferred by the transgenic miRNA is well correlated to the miRNA expression level. Comparison of the anti-CMV effect of the artificial miRNA to that of a short hairpin RNA-derived small RNA targeting the same site revealed that the miRNA approach is superior to the approach using short hairpin RNA both in transient assays and in transgenic plants. Together, our data demonstrate that expression of virus-specific artificial miRNAs is an effective and predictable new approach to engineering resistance to CMV and, possibly, to other plant viruses as well.  相似文献   

5.
6.
为研究ASL25/LBD28基因在植物发育过程中的作用,该研究构建了拟南芥ASL25/LBD28的过量表达载体并将其转入野生型拟南芥中,结果发现,ASL25/LBD28基因的过量表达可导致转基因拟南芥的叶片变得狭长;在叶极性发育突变体as2中,ASL25/LBD28基因过量表达导致部分转基因植株在形成1~3片畸形叶后顶端分生组织的发育会终止;而许多转基因植株则会形成许多"针状"叶.扫描电镜观察表明,不正常的叶片近轴面或"针状"叶的表皮细胞具有远轴面化的长条形细胞,说明在as2突变体中过量表达ASL25/LBD28基因影响叶片的极性发育.  相似文献   

7.
8.
RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus (A1MV) encode the replicase proteins P1 and P2, respectively. P1 expressed in transgenic plants (P1 plants) can be used in trans to support replication of A1MV RNAs 2 and 3, and P2 expressed in transgenic plants (P2 plants) can be used in trans to support replication of A1MV RNAs 1 and 3. Wild-type RNA 1 was able to coreplicate with RNAs 2 and 3 in P1 plants, but this ability was abolished by frameshifts or deletions in the P1 gene of RNA 1. Similarly, wild-type RNA 2 coreplicated with RNAs 1 and 3 in P2 plants, but frameshifts or deletions in the P2 gene of RNA 2 interfered with this replication. Apparently, the P1 and P2 genes are required in cis for the accumulation of RNAs 1 and 2, respectively. Point mutations in the GDD motif of the P2 gene in RNA 2 interfered with accumulation of RNA 2 in P2 plants, indicating that replication of RNA 2 is linked to its translation into a functional protein. Plants transformed with both the P1 and P2 genes (P12 plants) accumulate replicase activity that is able to replicate RNA 3 in trans. An analysis of the time course of the accumulation of RNAs 1, 2, and 3 in protoplasts of P12 plants supported the conclusion that translation and replication are tightly coupled for A1MV RNAs 1 and 2 but not for RNA 3.  相似文献   

9.
Wang L  Hua D  He J  Duan Y  Chen Z  Hong X  Gong Z 《PLoS genetics》2011,7(7):e1002172
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth.  相似文献   

10.
以‘西伯利亚’百合为试材,利用PCR技术克隆了查尔酮合成酶基因(CHS),构建了CHS基因的正义和反义植物表达载体,采用农杆菌介导法转化烟草叶盘,获得了转正义CHS基因的本明烟草18株,转反义CHS基因的普通烟草21株,总转化率为26.0%。高效液相色谱法(HPLC)检测结果显示,正义CHS转基因的本明烟草类黄酮含量升高14.0%~59.7%,反义CHS转基因的普通烟草类黄酮含量降低44.5%~76.4%。花色观察结果显示,正义转基因烟草的花瓣颜色未见变化,反义转基因烟草部分植株的花瓣颜色变浅。研究表明,CHS基因遗传转化是进行花色调控的有效手段之一。  相似文献   

11.
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (–)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.  相似文献   

12.
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.  相似文献   

13.
14.
Viroids are small self-replicating RNAs that infect plants. How these noncoding pathogenic RNAs interact with hosts to induce disease symptoms is a long-standing unanswered question. Recent experimental data have led to the suggestive proposal of a pathogenic model based on the RNA silencing mechanism. However, evidence of a direct relation between key components of the RNA silencing pathway and symptom expression in infected plants remains elusive. To address this issue, we used a symptomatic transgenic line of Nicotiana benthamiana that expresses and processes dimeric forms of Hop stunt viroid (HSVd). These plants were analyzed under different growing temperature conditions and were used as stocks in grafting assays with the rdr6i-Nb line, in which the RNA-dependent RNA polymerase 6 (RDR6) is constitutively silenced. Here, we show that the symptom expression in N. benthamiana plants is independent of HSVd accumulation levels but dependent on an active state of the viroid-specific RNA silencing pathway. The scion of rdr6i-Nb plants remained asymptomatic when grafted onto symptomatic plants, despite an accumulation of a high level of mature forms of HSVd, indicating the requirement of RDR6 for viroid-induced symptom production. In addition, the RDR6 requirement for symptom expression was also observed in wild-type N. benthamiana plants mechanically infected with HSVd. These results provide biological evidence of the involvement of the viroid-specific RNA silencing pathway in the symptom expression associated with viroid pathogenesis.  相似文献   

15.
Luo A  Qian Q  Yin H  Liu X  Yin C  Lan Y  Tang J  Tang Z  Cao S  Wang X  Xia K  Fu X  Luo D  Chu C 《Plant & cell physiology》2006,47(2):181-191
Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.  相似文献   

16.
Trehalose is a non-reducing disaccharide of glucose that occurs in a large number of organisms, playing an important role in desiccation and heat stress protection. Trehalose accumulation has proven to be an effective way of increasing drought tolerance in both model plants such as tobacco and important crops such as potato or rice. In this work we aim to genetically engineer maize with the Arabidopsis thaliana trehalose phosphate synthase gene (AtTPS1), involved in trehalose biosynthesis via electroporation. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene Bar as a selective agent was inserted in the plasmid vector pGreen0229 and used to transform maize inbred line Pa91 via electroporation. Fifteen putative transgenic plants (T0 generation) were obtained. Transgene integration in T0 plants was analyzed by Southern-blot analysis. T0 plants had normal phenotypes, although smaller than wild type plants. Contrary to wild type plants, when sexual organs emerged, tassels appeared at least 15 days earlier than ears in the same plant, rendering impossible the self-pollination of the T0 plant. These plants were then crossed with wild type plants and in some cases T1 seeds were obtained. T1 seeds presented deformities, especially the lack of endosperm, but it was still possible to germinate some of these seeds. The so obtained plants were tested by Northern blot but no AtTPS1 gene expression was detected, a fact possibly due to the incomplete insertion of the AtTPS1 gene or an extremely low gene expression level.  相似文献   

17.
转拟南芥P5CS1基因增强羽衣甘蓝的耐旱性   总被引:1,自引:0,他引:1  
为提高羽衣甘蓝的耐旱性,本文将拟南芥Δ1-吡咯啉-5-羧酸合成酶(P5CS1)基因经农杆菌介导转入羽衣甘蓝植株中,检测转基因株系与野生型植株在干旱胁迫下P5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干重、鲜重和整株存活率。结果表明,在15%PEG6000渗透胁迫下,转基因植株的P5CS1基因mRNA表达量明显增加,转基因植株脯氨酸含量是野生型的2.4倍;主根长、最长侧根长、侧根数目、整株干重和鲜重均高于野生型,干重/鲜重则低于野生型,转基因植株的平均存活率为78%,极显著高于野生型。数据显示,AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐旱性。  相似文献   

18.
L Pei  J Wang  K Li  Y Li  B Li  F Gao  A Yang 《PloS one》2012,7(8):e43501
Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H(+)-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号