首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification and characterization of the Cdc42-binding site of IQGAP1   总被引:2,自引:0,他引:2  
IQGAP1 is a multi-domained protein that integrates signaling of the Rho family GTPase Cdc42 with regulation of the cytoskeleton. Using SPOT analysis and in vitro peptide competition assays we have identified a 24 amino acid region of IQGAP1 that is necessary for Cdc42 binding. Both in vitro and in vivo analyses reveal that deletion of this sequence abolishes binding of IQGAP1 to Cdc42. In addition, the ability of IQGAP1 to increase the amount of active Cdc42 in cells is abrogated upon removal of this region. An IQGAP1 mutant lacking the Cdc42 binding site mislocalizes to the cell periphery. These observations specifically define a short sequence of IQGAP1 that is required for its interaction with Cdc42 and demonstrate that Cdc42 binding is necessary for the normal subcellular distribution of IQGAP1.  相似文献   

2.
IQGAP1 is a component of Cdc42 signaling to the cytoskeleton   总被引:4,自引:0,他引:4  
The Ras-GAP related protein IQGAP1 binds several proteins, including actin, calmodulin, E-cadherin and the Rho family GTPase Cdc42. To gain insight into its in vivo function, IQGAP1 was overexpressed in mammalian cells. Transfection of IQGAP1 significantly increased the levels of active, GTP-bound Cdc42, resulting in the formation of peripheral actin microspikes. By contrast, transfection of an IQGAP1 mutant lacking part of the GAP-related domain (IQGAP1deltaGRD) substantially decreased the amount of GTP-bound Cdc42 in cell lysates. Consistent with these findings, IQGAP1DeltaGRD blocked Cdc42 function in cells that stably overexpress constitutively active Cdc42 and abrogated the effect of bradykinin on Cdc42. In cells transfected with IQGAP1deltaGRD, bradykinin was unable to activate Cdc42, translocate Cdc42 to the membrane fraction, or induce filopodia production. IQGAP1deltaGRD transfection altered cellular morphology, producing small, round cells that closely resemble Cdc42-/- cells. Some insight into the mechanism was provided by in vitro analysis, which revealed that IQGAP1deltaGRD increased the intrinsic GTPase activity of Cdc42, thereby increasing the amount of inactive, GDP-bound Cdc42. These data imply that IQGAP1 has a crucial role in transducing Cdc42 signaling to the cytoskeleton.  相似文献   

3.
We have demonstrated previously that the Rho family GTPase Rac-1 is required for maintenance of endothelial barrier functions in mouse microvascular myocardial endothelial (MyEnd) cells in vitro as well as in rat mesenteric microvessels in vivo. In this study, we tested the hypothesis that specific activation of Rac-1 would stabilize microvascular endothelial barrier functions. For this purpose we used Escherichia coli Cytotoxic necrotizing factor (CNF-1) under conditions (300 ng/ml, 120 min) where it strongly activated Rac-1 and Cdc42 but not Rho A in MyEnd cells. Under these conditions, CNF-1 induced translocation of the actin-binding proteins cortactin and vasodilator-stimulated phosphoprotein (VASP) to cell junctions, increased the junction-associated actin filament belt, and reduced monolayer permeability. We also tested the effect of CNF-1 on endothelial barrier properties in vivo using single-perfused mesenteric microvessels. In contrast to cultured microvascular monolayers, CNF-1 did not reduce baseline barrier functions assayed as hydraulic conductivity (Lp). However, following 120 min pretreatment, CNF-1 significantly attenuated the peak Lp increase in response to platelet-activating factor (PAF, 10 nM) to 12.6±4×10−7 cm/(s cmH2O) compared to 46.2±10×10−7 cm/(s cmH2O) in experiments using PAF alone. These experiments indicate that activation of Rac-1 and Cdc42 stabilizes microvascular endothelial barrier functions in vitro and in vivo, likely by increasing the junction-associated actin cytoskeleton.  相似文献   

4.
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170   总被引:27,自引:0,他引:27  
Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.  相似文献   

5.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

6.
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.  相似文献   

7.
Human IQGAP1 is a widely expressed 190-kDa Cdc42-, Rac1-, and calmodulin-binding protein that interacts with F-actin in vivo and that can cross-link F-actin microfilaments in vitro. Recent results have implicated IQGAP1 as a component of pathways via which Cdc42 or Rac1 modulates cadherin-based cell adhesion (S. Kuroda et al., Science 281:832-835, 1998), whereas yeast IQGAP-related proteins have been found to play essential roles during cytokinesis. To identify critical in vivo functions of IQGAP1, we generated deficient mice by gene targeting. We demonstrate that IQGAP1 null mutants arise at normal frequency and show no obvious defects during development or for most of their adult life. Loss of IQGAP1 also does not affect tumor development or tumor progression, but mutant mice exhibit a significant (P < 0.0001) increase in late-onset gastric hyperplasia relative to wild-type animals of the same genetic background. While we cannot exclude that functional redundancy with IQGAP2 contributes to the lack of developmental phenotypes, the restricted expression pattern of IQGAP2 is not obviously altered in adult IQGAP1 mutant mice. Thus, IQGAP1 does not serve any essential nonredundant functions during murine development but may serve to maintain the integrity of the gastric mucosa in older animals.  相似文献   

8.
IQGAP1 contains a number of protein recognition motifs through which it binds to targets. Several in vitro studies have documented that IQGAP1 interacts directly with calmodulin, actin, E-cadherin, beta-catenin, and the small GTPases Cdc42 and Rac. Nevertheless, direct demonstration of in vivo function of mammalian IQGAP1 is limited. Using a novel assay to evaluate in vivo function of IQGAP1, we document here that microinjection of IQGAP1 into early Xenopus embryos generates superficial ectoderm lesions at late blastula stages. This activity was retained by the mutated variants of IQGAP1 in which the calponin homology domain or the WW domain was deleted. By contrast, deletion of the IQ (IQGAP1-DeltaIQ), Ras-GAP-related (IQGAP1-DeltaGRD), or C-terminal (IQGAP1-DeltaC) domains abrogated the effect of IQGAP1 on the embryos. None of the latter mutants bound Cdc42, suggesting that the binding of Cdc42 by IQGAP1 is critical for its function. Moreover, overexpression of IQGAP1, but not IQGAP1-DeltaGRD, significantly increased the amount of active Cdc42 in embryonic cells. Co-injection of wild type IQGAP1 with dominant negative Cdc42, but not the dominant negative forms of Rac or Rho, blocked the effect of IQGAP1 on embryonic ectoderm. Together these data indicate that the activity of IQGAP1 in embryonic ectoderm requires Cdc42 function.  相似文献   

9.
The Rho family small GTPase Cdc42 transmits divergent intracellular signals through multiple effector proteins to elicit cellular responses such as cytoskeletal reorganization. Potential effectors of Cdc42 implicated in mediating its cytoskeletal effect in mammalian cells include PAK1, WASP, and IQGAP1. To investigate the determinants of Cdc42-effector specificity, we utilized recombinant Cdc42 mutants and chimeras made between Cdc42 and RhoA to map the regions of Cdc42 contributing to specific effector p21-binding domain (PBD) interaction. Site-directed mutants of the switch I domain and neighboring regions of Cdc42 demonstrated differential binding patterns toward the PBDs of PAK1, WASP, and IQGAP1, suggesting that switch I provides essential determinants for the effector binding, but recognition of each effector by Cdc42 involves a distinct mechanism. Differing from Rac1, the switch I domain and the surrounding region (amino acids 29 to 55) of Cdc42 appeared to be sufficient for specific binding to PAK1, whereas determinants outside the switch I domain, residues 157-191 and 84-120 in particular, were necessary and sufficient to confer specificity to WASP and IQGAP1, respectively. In addition, IQGAP1, but not PAK1 nor WASP, required the unique "insert region," residues 122-134, of Cdc42 to achieve high affinity binding. Microinjection of the constitutively active Cdc42/RhoA chimeras into serum-starved Swiss 3T3 cells showed that although preserving PAK1- and WASP-binding activity could retain the peripheral actin microspike (PAM)-inducing activity of Cdc42, interaction with PAK1 or WASP was not required for this activity. Moreover, IQGAP1-binding alone by Cdc42 was insufficient for PAM-induction. Thus, Cdc42 utilizes multiple distinct structural determinants to specify different effector recognition and to elicit PAM-inducing effect.  相似文献   

10.
Rho family small GTPases are critical regulators of multiple cellular processes and activities. Dbl homology domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho proteins. Recently another group of mammalian Rho-GEFs was discovered that includes CDM (Ced-5, DOCK180, Myoblast city) proteins that activate Rac and zizimin1 that activates Cdc42 via a nonconventional GEF module that we named the CZH2 domain. We report here that zizimin1 dimerizes via the CZH2 domain and that dimers are the only form detected. Dimerization was mapped to a approximately 200-amino acid region that overlaps but is distinct from the Cdc42-binding sequences. Rotary shadowing electron microscopy revealed zizimin1 to be a symmetric, V-shaped molecule. Experiments with DOCK180 and homology analysis suggest that dimerization may be a general feature of CZH proteins. Deletion and mutation analysis indicated existence of individual Cdc42-binding sites in the zizimin1 monomers. Kinetic measurements demonstrated increased binding affinity of Cdc42 to zizimin1 at higher Cdc42 concentration, suggesting positive cooperativity. These features are likely to be critical for Cdc42 activation.  相似文献   

11.
Briggs MW  Sacks DB 《FEBS letters》2003,542(1-3):7-11
A family of proteins known as IQGAPs have been identified in yeast, amebas and mammals. IQGAPs are multidomain molecules that contain several protein-interacting motifs which mediate binding to target proteins. Mammalian IQGAP1 is a component of signaling networks that are integral to maintaining cytoskeletal architecture and cell-cell adhesion. Published data suggest that IQGAP1 is a scaffolding protein that modulates cross-talk among diverse pathways in complex regulatory circuits. These pathways include modulating the actin cytoskeleton, mediating signaling by Rho family GTPases and calmodulin, regulating E-cadherin and beta-catenin function and organizing microtubules.  相似文献   

12.
Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved.  相似文献   

13.
The Rho-GTPase Cdc42 is important for the establishment and maintenance of epithelial polarity. Signaling from Cdc42 is propagated via its effector molecules that specifically bind to Cdc42 in the GTP-bound form. The cell-cell contact regulator and actin-binding protein IQGAP1 is described as effector of Cdc42 and Rac. Unexpectedly, we show in this study that IQGAP1 bound also directly nucleotide-depleted Cdc42 (Cdc42-ND). This interaction was enhanced in the presence of phosphatase inhibitors and in epithelial cells without cell-cell contacts. Tandem mass spectrometry analysis and immunoprecipitation experiments revealed that IQGAP1 was Ser1443-phosphorylated in vivo, potentially by protein kinase Cepsilon and upon loss of cell-cell contacts. In addition, we identified two independent domains of the IQGAP1 C terminus that bound exclusively Cdc42-ND. These domains interacted with each other, favoring the binding to Cdc42-GTP. Moreover, phosphorylation on Ser1443 strongly inhibited this intramolecular interaction. Thus, we unraveled a molecular mechanism that reveals a novel type of Rho-GTPase regulator. We propose that, depending on its phosphorylation state, IQGAP1 might serve as an effector or sequester nucleotide-free Cdc42 to prevent signaling.  相似文献   

14.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

15.
Cdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte.  相似文献   

16.
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization.  相似文献   

17.
The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.  相似文献   

18.
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin-based AJs.  相似文献   

19.
The p21 GTPases, Rho and Cdc42, regulate numerous cellular functions by binding to members of a serine/threonine protein kinase subfamily. These functions include the remodeling of the cell cytoskeleton that is a feature of cell growth and differentiation. Two of these p21 GTPase-regulated kinases, the myotonic dystrophy protein kinase-related Cdc42-binding kinases (MRCKalpha and beta), have been recently characterized in rat. Both of these proteins phosphorylate nonmuscle myosin light chain, a prerequisite for the activation of actin-myosin contractility. Here we report the cDNA cloning of the human homologue of MRCKbeta, CDC42BPB, which was found by Northern blot analysis to be expressed in a wide range of tissues. The human CDC42BPB gene maps to cytogenetic band 14q32.3 by FISH analysis.  相似文献   

20.
Adherens junction formation is fundamental for compaction and trophectoderm differentiation during mammalian preimplantation development. We recently isolated an IQGAP-2 cDNA from a differential display-polymerase chain reaction screen of bovine preimplantation developmental stages. IQGAP-1 and -2 proteins mediate E-cadherin-based cell-to-cell adhesion through interactions with beta-catenin and the Rho GTPases, rac1 and cdc42. Our study demonstrates IQGAP-1,-2, rac-1 and cdc42 mRNAs are present throughout murine preimplantation development. IQGAP-1 and rac-1 protein distribution changes from predominantly plasma membrane associated to predominantly cytoplasmic as the embryo progresses through cleavage divisions and compaction to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号