首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glandular Trichomes in Satureja thymbra Leaves   总被引:2,自引:0,他引:2  
The leaves of the aromatic plant Satureja thymbra have numerousglandular trichomes of two morphologically distinct types glandularhairs and glandular scales Investigations of the anatomy ofthese glandular trichomes with serial thick sections revealedthat the glandular hairs consist of three cells a foot, stalkand head cell Glandular scales also have a unicellular footand stalk Their heads, however, are composed of 12 cells Fourof these cells are small, occupying the central region of thehead, whereas the remainder are large and peripherally arrangedMorphometric analysis showed that, in leaf surface view, glandularscales are about 17-fold larger than glandular hairs In addition,glandular scales were found to occupy 5 7 % of the entire leafsurface area In each glandular scale the total amount of essentialoil, contained within both the subcuticular space and the interiorof the secretory cells, was calculated to be 2 51 x 10–4mm3 The volume of the essential oil produced by all glandularscales on a single mature leaf was correspondingly determinedto be 0.059 mm3 Finally, the theoretical essential oil yieldof 100 g dry leaves of S thymbra was estimated to be 3 54 %(secretory activity of glandular scales only) Satureja thymbra, glandular trichomes, morphology, morphometry  相似文献   

2.
Anatomical and histological investigations of the secretoryhairs ofSalvia aurea leaves, and identification of the maincomponents of the essential oil were carried out. Two typesof glandular trichome were found: peltate glands, characterizedby a short stalk and a large six to eight-celled head, and capitatetrichomes which were further subdivided into two kinds, thefirst with a short monocellular stalk and two-cellular head(type I), and the second with a multicellular stalk, a neckcell and a small globose unicellular head (type II). Whereaspeltate glands and type I capitate trichomes were always present,type II capitate glands were not found in all leaf samples.The histochemical study suggested an ‘endodermal’role for the stalk cell (peltate and capitate type I) as wellas for the neck cell (capitate type II), preventing the lossof essential oil. Histological reactions also revealed the complexnature of the material secreted by all types ofS. aurea trichome,including polysaccharides, polyphenols and proteins, in additionto the essential oil. Qualitative and quantitative GC-MS analysisof the essential oil revealed camphor to be the main constituent.The findings are discussed in relation to studies of trichomesfrom other members of the Lamiaceae. Salvia aurea L.; glandular trichomes; histochemistry; essential oil  相似文献   

3.
A new method is reported for the histochemical localizationof monoterpene phenols in essential oil secretory structures.The method was adapted from a spot test originally devised forin vitro detection of phenolic compounds in organic analyses.Plant subjects were the Lamiaceae species Thymus vulgaris L.,Oreganum vulgare L. and Mentha x piperita L., which accumulateessential oil in glandular trichomes. A reagent consisting of4-nitrosophenol in conc. H2SO4was applied to sample leaves ofeach species. A positive test for phenol was indicated by theproduction of coloured indophenols. Using this method, monoterpenephenols were identified in the trichomes of T. vulgaris(thymol)and O. vulgare(carvacrol), indicated by colour changes to redand green respectively. No phenol was detected in trichomesof M. x piperita. Results were confirmed by GC-MS analysis ofleaf volatile extracts from each species, and in vitro testswith thymol and carvacrol. The method could be used in fieldsurveys for rapid identification of potential medicinal plantsand bioactive compounds. Copyright 2001 Annals of Botany Company Histochemistry, secretory structures, glandular trichomes, Lamiaceae, Thymus vulgaris, Oreganum vulgare, Mentha x piperita, essential oil, aromatic monoterpenes  相似文献   

4.
The types of glandular trichomes and their distribution on leavesand flowers of Plectranthus ornatus were investigated at differentstages of their development. Five morphological types of glandulartrichomes are described. Peltate trichomes, confined to theleaf abaxial surface, have, in vivo, an uncommon but characteristicorange to brownish colour. Capitate trichomes, uniformly distributedon both leaf surfaces, are divided into two types accordingto their structure and secretory processes. In long-stalkedcapitate trichomes, a heterogeneous secretion (a gumresin) isstored temporarily in a large subcuticular space, being releasedby cuticle rupture, whereas, in the short-stalked capitate trichomes,the secretion, mainly polysaccharidic, is probably exuded viamicropores. On the leaves, digitiform trichomes, which do notshow a clear distinction between the apical glandular cell andthe subsidiary cells, occur with a similar distribution to thecapitate trichomes. They do not develop a subcuticular space,and secrete small amounts of essential oils in association withpolysaccharides. The reproductive organs, particularly the calyxand corolla, exhibit, in addition to the reported trichomes,unusual conoidal trichomes with long unicellular conical heads.A large apical pore, formed by tip disruption, releases thesecretion (a gumresin) stored in a rostrum-like projection.On the stamens and carpels, digitiform, capitate and conoidaltrichomes are absent, but peltate trichomes are numerous. Theyoccur between the two anther lobes, on the basal portion ofthe style, and between the four lobes of the ovary. The resultspresented are compared with those of other studies on Lamiaceaeglandular trichomes. Copyright 1999 Annals of Botany Company Plectranthus ornatus Codd, Lamiaceae, glandular trichomes, morphology, histochemistry, essential oils and mucilage secretion.  相似文献   

5.
The structure of the essential oil secretory tissues of Prostanthera ovalifolia R.Br was investigated using bright- and dark-field optical microscopy, and scanning and transmission electron microscopy. The leaves of P. ovalifolia have glandular trichomes of the peltate type common to many Lamiaceae species. The trichomes consist of a basal cell embedded in the epidermis, a stalk cell with heavily cutinized walls and a 16-celled secretory head, but they differ from those of many previously reported Lamiaceae species in their morphological form defined by the elevated cuticle. The sub-cuticular space contains a mixture of lipid and aqueous phases. Secretory cells have dense cytoplasm with many leucoplasts present. Volatile terpenoids are eliminated from the cytoplasm into the sub-cuticular space, the site of essential oil accumulation, via granulocrine secretion.  相似文献   

6.
The glandular trichomes ofFagoniaconsist of one secretory celland a multicellular stalk, which develops by division, elongationand elevation of epidermal cells. The latter become seperatedfrom the mesophyll and a subepidermal chamber is formed. Thelength of the stalk, which differs in the various species orvarieties is determined by the number of cell divisions and/or the extent of cell elongation. Although the basic morphologyand development of the trichomes of the species and varietiesexamined are similar, two types of mature trichomes can be distinguished:one occurs in the two examined varieties ofF. mollisand thesecond inF. glutinosaandF. arabica. The secretory cells of thesecond type possess a very thick wall and bear a porous cupuleon their top. Histochemical tests revealed that the sticky substancesecreted by the secretory cells contains mainly polysaccharidesand lipophilic compounds. The secreted material exhibits autofluorescence.InF. mollisvar.hispidachanges in the amount and shape of thefluorescent material inside the secretory cell, during the courseof development, have been observed. The contribution of theglandular trichomes inFagoniaspecies to survival in hot desertconditions is discussed. Fagonia; glandular trichomes; subepidermal chamber; secreted material; adaptation to desert conditions; stalk; fluorescence  相似文献   

7.
The genus Cyclotrichium (Boiss.) Manden. & Scheng. is represented by six species in Turkey: C. glabrescens, C. leucotrichum, C. longiflorum, C. niveum, C. origanifolium and C. stamineum. They are aromatic perennial subshrubs used as spices or herbal teas in traditional Turkish medicine. The leaf anatomy and tomentum morphology of leaves and calyces of Cyclotrichium species in Turkey was investigated by scanning electron microscopy (SEM) and light microscopy (LM). The investigated species have equifacial (C. niveum, C. origanifolium) or bifacial leaves (C. glabressens, C. leucotrichum, C. longiflorum, C. stamineum). All species have peltate and capitate glandular, and simple (all species) or branched (C. niveum) eglandular trichomes and diacytic stomata. Peltate trichomes consist of a basal cell embedded in the epidermis, a stalk cell, and a broad 12 (–13)‐celled secretory head arranged in two concentric circles. The capitate trichomes observed in Cyclotrichium can be grouped into five types, differing in structure and size. They consist of either a pear‐shaped or globose unicellular head and uni‐or bicellular stalk, or a bicellular head and bicellular stalk. The density of peltate, capitate and eglandular trichomes differs between species. Peltate trichomes are densely spaced only on the calyx and on the leaf surface of C. niveum and C. origanifolium and on the abaxial leaf surface of C. longiflorum and C. stamineum. The significance of trichome architecture for taxonomy in Cyclotrichium and Lamiaceae in general is discussed.  相似文献   

8.
王涛  刘世勇  王龙  王红玉  张利 《广西植物》2015,35(2):236-241
类黄酮-3-O-葡萄糖基转移酶(Flavonoid-3-O-glucosyltransferase,3GT)是花青苷(Anthocyanins)生物合成途径中的关键酶,它主要负责将不稳定的花色素转变为稳定的花色素苷,虽然目前已经从其他植物中克隆获得类黄酮-3-O-葡萄糖基转移酶,但是对竹子中的类黄酮-3-O-葡萄糖基转移酶并不清楚。该文以产生花青素的七彩红竹(Indosasa hispida Mc Clure cv.Rainbow)为材料,首先通过3GT的同源比对后设计3GT基因特异引物,获得3GT基因片段;然后运用RT-PCR及RACE技术从七彩红竹茎中克隆得到完整的3GT基因(Ih3GT)。结果表明:Ih3GT基因的c DNA全长序列为1 730 bp,含有1个1 425 bp的开放阅读框(ORF),编码474个氨基酸;系统进化分析显示,七彩红竹3GT与其他禾本科植物的3GT聚类到同一个分支;该基因推断的蛋白与水稻(Oryza sativa)3GT蛋白的相似性为69%,与二穗短柄草(Brachypodium distachyon)3GT的相似性为67%;经氨基酸序列比对,推断七彩红竹3GT含有糖基转移酶基因家族特有的结构域PSPG-box;半定量PCR的结果显示,七彩红竹3GT基因在微红的幼茎中大量表达,而在其他组织中并不表达,说明Ih3GT具有组织表达特异性。该结果为今后深入研究七彩红竹花色苷的形成机理、鉴定Ih3GT酶活性以及利用Ih3GT基因培育竹子新品种奠定了基础。  相似文献   

9.
The knob-like structure at the leaf tip of Ranunculus reptansis shown to have glandular c aracteristics, probably actingas a hydathode. Specialized cells with pyrenoid-like bodiesoccur round the hydathode apertures.  相似文献   

10.
The natural products that accumulate in or exude from plant glandular trichomes are biosynthesized by secretory cells located at the apex of the trichome. To investigate the formation of glandular trichome constituents in several species of mints (Lamiaceae), a new procedure was developed for isolating large numbers of highly purified secretory cells. In this method, the leaf surface is gently abraded with glass beads in a way that fragments the glandular trichomes and yields clusters of intact secretory cells. The isolated, intact secretory cells and cell-free preparations derived from them are very active in monoterpene biosynthesis and provide useful starting materials for the purification of several key enzymes of monoterpene metabolism. The procedure described is adaptable to a broad range of plant species and should find wide application in the preparation of whole cell and cell-free systems for biosynthetic studies of plant natural products found in glandular trichomes.  相似文献   

11.
LYSHEDE  OLE B. 《Annals of botany》1980,46(5):519-526
The potato plant has two types of glandular trichomes whichwere investigated by electron microscopy. One type has a eight celled globular head on a neck cell anda stalk cell Each glandular cell has many rather large vacuoles,a large nucleus, many ribosomes and mitochondria, a few Golgibodies, and darkly coloured, often irregular plastids (chloroplasts).The plastids are mostly located near the axial cell wall borderinga large central intercellular space filled with secretion materialThe plastids are assumed to participate in the formation ofthe secretion material, which reacts positively to esterasetests. The outer wall is covered by a thin cuticle. The other type has a club-shaped multicellular head on a singlestalk cell. The cytoplasmic features in the cells are similarto those of the globular-headed trichome, except that they possesslarge central vacuoles and randomly distributed plastids. Centricendoplasmic reticulum has been observed in young cells. Intercellularspaces develop between the cells and into the outer wall, whichis thus split into two. Whereas the older glandular cells reactpositively to tests for esterase, the secretion material itselfis pectinaceous and reacts negatively. The outer wall is cutinizedand covered by a cuticle. Solanum tuberosum L., potato, glandular trichomes, ultrastructure  相似文献   

12.
The leaf epidermis of 14 species ofCodonanthe and 10 species of Nematanthus has been examined. Species of Codonanthe section Codonanthe are geographically restricted to south-eastern Brazil, and are diploid. They possess multicellular-uniseriate nonglandular trichomes, glandular trichomes with a four-celled head and a short body, anisocytic stomata and lack extrafloral nectaries. Species of Codonanthe section Spathuliformae and Codonanthe subgenus Codonanthella are distributed from southern Mexico through Central America to north-western South America and are tetraploid. They possess unicellular non-glandular trichomes (except C. caribaea), glandular trichomes with a two-celled head (except C. caribaea) and a short body, anisocytic stomata and extrafloral nectaries (except C. caribaea). All Nematanthus species are distributed in south-eastern Brazil and are diploid (N=8). Six species of Nematanthus consistently have multicellular-uniseriate nonglandular trichomes, glandular trichomes with a four-celled head and a short (unicellular) or long (multicellular) body, anisocytic stomata and lack extrafloral nectaries. Four species of Nematanthus have multicellular-uniseriate non-glandular trichomes, glandular trichomes with a head of more than four cells and a short body, anisocytic and helicocytic stomata and lack extrafloral nectaries.  相似文献   

13.
This study characterises the micromorphology, ultrastructure and main chemical constituents of the foliar glandular trichomes of Ocimum obovatum using light and electron microscopy and a variety of histochemical tests. Two types of glandular trichomes occur on the leaves: large peltate and small capitate. The head of each peltate trichome is made up of four broad head cells in one layer. The head of each capitate trichome is composed of two broad head cells in one layer (type I) or a single oval head cell (type II, rare). In peltate heads, secretory materials are gradually transported to the subcuticular space via fracture in the four sutures at the connecting walls of the head cells. Release to the head periphery occurs through opposite fracture in the four sutures in the head cuticle. In type I capitate trichomes, release of the secretions to the subcuticular space occurs via a pore between the two head cells, and release to the head periphery occurs through the opposite pore in the head cuticle. In type II capitate trichomes, the secreted material is released from the head cell through a ruptured particular squared area at the central part of the head cuticle. These secretion modes are reported for the first time in the family Lamiaceae. Histochemical tests showed that the secretory materials in the glandular trichomes are mainly essential oils, lipophilic substances and polysaccharides. Large peltate trichomes contain a large quantity of these substances than the small capitate trichomes. Ultrastructural evidence suggests that the plastids produce numerous lipid droplets, and the numerous polysaccharide small vesicles are derived from Golgi bodies.  相似文献   

14.
The types of glandular hairs and their pattern of distributionon leaves of Ocimum basilicum L. at different stages, were investigated.Their essential oil at the various stages was chemically analysed.The density of the glandular hairs appears to be very high onyoung meristematic leaves and on meristematic regions of olderleaves. When the leaf regions start to expand no new glandularhairs are produced and their density decreases. The essentialoil differs in the percentage of some of its components betweenyoung and mature leaf regions.Copyright 1993, 1999 AcademicPress Ocimum basilicum, sweet basil, glandular hairs, leaf development, essential oil, cugenol, methyl chavicol, 1,8-cineole  相似文献   

15.
An improved technique for separation of glandular trichomesfrom leaves of rugosa rose (Rosa rugosa Thunb.) was developed.The glandular hairs that had been tightly attached to the tissueof leaf veins via rigid cells were efficiently detached by shakingwith quartz sand dispersed in a solution of mannitol and sodiumascorbate. The mixture of the glandular and simple trichomessuspended in the separation solution was collected by filtrationover nylon mesh (150 mesh), and then it was centrifuged in asolution that contained glycerol. The glandular trichome tips,which were not susceptible to browning, were used for preliminarystudies of cell-free conversions of sesquiterpenes. The glandulartrichomes were found to be a potential source of enzymes associatedwith the biosynthesis and/or bioconversion of sesquiterpenesof R. rugosa. (Received July 28, 1994; Accepted November 11, 1994)  相似文献   

16.
The types of glandular trichomes, their ontogeny and patternof distribution on the vegetative and reproductive organs ofLeonotis leonurus at different stages of development, are studiedby light and scanning electron microscopy. Two morphologicallydistinct types of glandular trichomes (peltate and capitate)are described. Peltate trichomes, at the time of secretion,are characterized by a short stalk, which is connected witha large spherical head composed of eight cells in a single layer.Capitate trichomes can be divided into various types. Generally,they consist of a four-celled head supported by one or threestalk cells. The two kinds of trichomes differ in the secretionprocess. In the peltate trichomes, the secretory product seemsto remain accumulated in a subcuticular space, unless an externalfactor damages it. In the capitate trichomes, this product probablybecomes released through micropores. On the leaves peltate andcapitate trichomes are abundant, while on the flowers only thepeltate trichomes are numerous and the capitate are rare orabsent.Copyright 1995, 1999 Academic Press Leonotis leonurus R. Br., lion's ear, lion's tail, Lamiaceæ, glandular trichomes, morphology, ontogeny  相似文献   

17.
Salt Glands in the Zoysieae   总被引:5,自引:0,他引:5  
Salt glands were found in two species of the genus Zoysia ofthe tribe Zoysieae, sub-family Chloridoideae (Poaceae). Glandsprotrude from and are recumbent to the leaf epidermis, and consistof two cells, a basal cell and upper cap cell. Glands were betterdeveloped on the adaxial surfaces. Those on the abaxial surfaceappear to be non-functional. Zoysia matrella, the more salt-tolerantspecies, had a higher density of larger glands, and secretedmore sodium per unit leaf mass, resulting in much lower leafsap osmolalities than those of the more salt-sensitive Z. japonica.The finding of salt glands in the tribe Zoysieae confirms itsrelation to the four other tribes within the sub-family Chloridoideaein which salt glands have previously been reported. Salt glands, Zoysieae, Poaceae, Japanese lawngrass, Zoysia japonica, Manilagrass, Zoysia matrella, sodium chloride, salt tolerance, secretion  相似文献   

18.
Contrasting effects on the stomatal index (SI), stomatal density,epidermal cell size and number were observed in four chalk grasslandherbs (Sanguisorba minor Scop., Lotus corniculatus L., Anthyllisvulneraria L. and Plantago media L.) following exposure to elevatedcarbon dioxide concentrations (CO2) in controlled environmentgrowth cabinets. SI of S. minor increased for both leaf surfaces,whilst in A. vulneraria and P. media SI decreased on one surfaceonly. In L. corniculatus , no differences in SI were observedas epidermal cell density changed in parallel with stomataldensity. In L. corniculatus and S. minor stomatal density increasedon both surfaces, whereas in P. media it decreased; in A. vulnerariastomatal density decreased on the abaxial leaf surface alonefollowing exposure to elevated CO2. In the latter three species,SI changed because stomatal density did not change in parallelwith epidermal cell density. The results suggest elevated CO2is either directly or indirectly affecting cell differentiationand thus stomatal initiation in the meristem. In S. minor and P. media leaf growth increased in elevated CO2,because of increased cell expansion of epidermal cells, whereasin L. corniculatus, epidermal cell size decreased and greaterleaf growth was because of an increase in epidermal cell divisions.In A. vulneraria, leaf size did not change, but increased cellexpansion on the adaxial surface suggests CO2 affects leaf surfacesdifferently, either directly or indirectly at the cell differentiationstage or as the leaf grows. These results suggest component species of a plant communitymay differ in their response to elevated CO2. Predicting theeffect of environmental change is therefore difficult.Copyright1994, 1999 Academic Press Elevated CO2, Sanguisorba minor (salad burnet), Lotus corniculatus (birdsfoot trefoil), Anthyllis vulneraria (kidney vetch), Plantago media (hoary plantain), stomatal index, stomatal density, epidermal cell size  相似文献   

19.
Ficus carica L., a typical plant of the Mediterranean environment, presents leaves covered by an extensive indumentum, and a mesophyll full of solid inclusions. The morphology and ultrastructure of the trichomes, calcium carbonate cystoliths and silicified structures of leaves of F. carica cv Dottato were investigated with light, confocal, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. At the same time, histochemical reactions were also employed to analyse the indumentum composed by glandular and non-glandular trichomes by applying chemical reagents and fluorescence microscopy. Non-glandular and glandular trichomes, capitate, are described. Non-glandular trichomes are unicellular simple, spine-like and present different morphology and sizes. The capitate glandular trichomes are present on leaf adaxial and abaxial surface and consist of one-celled stalk and 3/4 cells spherical head. Histochemical characterisation of leaf hairs revealed the presence of flavonoids, while glandular trichome head cells showed a complex mixture of alkaloids, essential oil and flavonoids. Cu and Al were found in the constitutive structures, spike and dome, of the cystoliths. Several epidermal cells and non-glandular trichomes were silicified. Leaf hairs, trichomes secretions, solid inclusions and silicification of F. carica leaf have significant roles to play in relation to leaf protection from external factors, including high-intensity radiation, herbivores or pathogens.  相似文献   

20.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号