首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of N-linked glycosylation on secretion, activity, and stability of α-amylase from Aspergillus oryzae grown as dispersed filaments was studied. In the presence of tunicamycin the fungus grew either as dispersed filaments or as one large pellet, whereas growth was as dispersed filaments in all control cultures. The presence of tunicamycin affected neither biomass, level of secreted α-amylase, nor total amount of secreted protein in cultures growing as dispersed filaments. In these cultures both glycosylated and nonglycosylated α-amylase appeared in the culture medium as well as in the cells, whereas in control cultures only the glycosylated form of α-amylase was found in the medium and in the cells. The presence of nonglycosylated α-amylase in the medium seemed to result from active secretion rather than from autolysis of the mycelium or extracellular deglycosylation. Deglycosylation with Endo H of crude α-amylase in culture filtrate did not affect its stability towards heat, acid pH, or proteolytic degradation. Received: 22 December 1997 / Accepted: 24 February 1998  相似文献   

2.
Immunoglobulin G2a (IgG2a) secreted by the hybridoma line M 31 was found to contain covalently linked sulphate. The sulphate was bound to the heavy chain which existed in several isoelectric variants. All variants were sulphated, the more acidic ones being more highly sulphated. Within the heavy chain the sulphate was not linked to tyrosine, threonine or serine residues, but appeared to be bound to N-linked oligosaccharides located in the Fab-portion. In contrast, the N-linked oligosaccharides in the Fc-portion were unsulphated. Surprisingly, the unglycosylated IgG secreted in the presence of tunicamycin, an inhibitor of N-glycosylation, was not unsulphated, but contained four times as much sulphate on the heavy chain as control IgG. All isoelectric variants of the non-glycosylated heavy chain contained sulphate. This sulphate was localized in the Fc-portion and was largely bound to tyrosine residues. These results show that, upon inhibition of N-glycosylation, the IgG is not simply secreted in non-glycosylated form, but has undergone a different post-translational modification, tyrosine sulphation. We discuss the possibility that tyrosine sulphate residues functionally compensate for the absence of N-linked (sulphated) oligosaccharides in IgG. One common function for these two protein modifications could be to serve as signals for the secretion of IgG.  相似文献   

3.
Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.  相似文献   

4.
Biosynthesis of proteodermatan sulfate in cultured human fibroblasts   总被引:18,自引:0,他引:18  
Biosynthesis and secretion of proteodermatan sulfate produced by cultured human skin fibroblasts were investigated employing immunological procedures. During an incubation period of 10 min in the presence of [3H]leucine, two core protein forms of Mr = 46,000 and 44,000, respectively, were synthesized. They were converted to mature proteodermatan sulfate with a half-time of approximately 12 min. Fifty per cent of total mature proteodermatan sulfate were found in the culture medium after a 35-min chase. Six to eight per cent remained associated with the cell layer after a chase of 6 h. In the presence of tunicamycin, fibroblasts synthesized a single core protein of Mr = 38,000 that was converted to mature proteodermatan sulfate and secreted with similar kinetics as the N-glycosylated species. Subtle differences in the molecular size of core proteins were noted when cell-associated and secreted proteodermatan sulfate were degraded with chondroitin ABC lyase, but core proteins free of N-linked oligosaccharides were identical. Labeling with [3H]mannose revealed that secreted proteodermatan sulfate contains two or three complex-type or two complex-type and one high-mannose-type N-linked oligosaccharide chains. The N-glycans are bound to a 21-kDa fragment of the core protein. After incubation in the presence of [3H]glucosamine, the [3H]galactosamine/[3H]glucosamine ratio was 3.76 and 3.30 for secreted and cell-associated proteodermatan sulfate, respectively. Evidence for the presence of O-linked oligosaccharides could not be obtained. Small amounts of core protein free of dermatan sulfate chains were secreted when the cultures were treated with p-nitrophenyl-beta-D-xyloside.  相似文献   

5.
The alpha and beta subunits of meprins, mammalian zinc metalloendopeptidases, are extensively glycosylated; approximately 25% of the total molecular mass of the subunits is carbohydrate. The aim of this study was to investigate the roles of the N-linked oligosaccharides on the secreted form of mouse meprin A. Recombinant meprin alpha and mutants in which one of the 10 potential Asn glycosylation sites was mutated to Gln were all secreted and sorted exclusively into the apical medium of polarized Madin-Darby canine kidney cells, indicating that no specific N-linked oligosaccharide acts as a determinant for apical targeting of meprin alpha. Several of the mutant proteins had decreased enzymatic activity using a bradykinin analog as substrate, and deglycosylation of the wild-type protein resulted in loss of 75-100% activity. Some of the mutants were also more sensitive to heat inactivation. In studies with agents that inhibit glycosylation processes in vivo, tunicamycin markedly decreased secretion of meprin, whereas castanospermine and swainsonine had little effect on secretion, sorting, or enzymatic properties of meprin. When all the potential glycosylation sites on a truncated form of meprin alpha (alpha-(1-445)) were mutated, the protein was not secreted into the medium, but was retained within the cells even after 10 h. These results indicate that there is no one specific glycosylation site or type of oligosaccharide (high mannose- or complex-type) that determines apical sorting, but that core N-linked carbohydrates are required for optimal enzymatic activity and for secretion of meprin alpha.  相似文献   

6.
Summary Both tunicamycin, an inhibitor of N-linked glycosylation of proteins, and cyclopiazonic acid, which inhibits the Ca2+-dependent ATPase in the ER, influence the secretory pathway at the ER level and lead to a cessation of cell growth inMicrasterias. Electron microscopical investigations reveal that the mode of action of the two inhibitors differs. While tunicamycin treatment results in a disintegration of the Golgi bodies into small vesicles, cyclopiazonic acid prevents products being supplied from the ER, resulting in the dilatation of ER cisternae and a reduction in the number of Golgi cisternae, combined with a loss of dictyosomal activity. The disturbed cell wall formation under tunicamycin indicates that N-linked glycosylation of proteins is required for normal cell growth inMicrasterias. Moreover, our studies reveal that changes in cytoplasmic free calcium concentration, as a consequence of ATPase inhibition in the ER by cyclopiazonic acid, may inhibit wall material secretion by interrupting the normal ER-dictyosome association.Abbreviations CPA cyclopiazonic acid - ER endoplasmic reticulum - TM tunicamycin  相似文献   

7.
a-Galactosidase from Trichoderma reesei is a glycoprotein that contains O- and N-linked carbohydrate chains. There are 6 O-linked glycans per protein molecule that are linked to serine and threonine and can be released by b-elimination. Among these are monomers: D-glucose, D-mannose, and D-galactose; dimers: a1-6 D-mannopyranosyl- a-D-glycopyranoside and a1-6 D-glucopyranosyl- a-D-galactopyranoside and one trimer: a-D-glucopyranosyl- a1-2 D-mannopyranosyl- a1-6 D-galac-topyranoside. N-linked glycans are of the mannose-rich type and may be released by treating the protein with Endo- b-N-acetyl glycosaminidase F or by hydrozinolysis. The enzyme was deglycosylated with Endo- b- N-acetyl glycosaminidase F as well as with a number of exoglycosidases that partially remove the terminal residues of O-linked glycans. The effect of enzymatic deglycosylation on the properties of a-galactosidase has been considered. The effects of tunicamycin and 2-deoxyglucose on the secretion and glycosylation of the enzyme during culture growth have been analysed. The presence of two glycoforms of a-glactosidase differing in the number of N-linked carbohydrate chains and the microheterogeneity of the carbohydrate moiety of the enzyme are described. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
T Su  R Cariappa  K Stanley 《FEBS letters》1999,453(3):391-394
In MDCK cells, N-glycans have been shown to determine the sorting of secretory proteins and membrane proteins to the apical domain in the absence of a dominant basolateral targeting signal. We have examined the sorting of endogenous proteins in ECV304 cells in the presence and absence of tunicamycin, an inhibitor of N-linked glycosylation. A prominent apically secreted protein of 71 kDa was not N-glycosylated and continued to be secreted apically in the presence of tunicamycin. In contrast, other endogenous proteins that were N-glycosylated were secreted preferentially into the basolateral medium or without polarity. When rat growth hormone was expressed in MDCK and ECV304 cells, we observed 65 and 94% of the secretion to the basolateral medium, respectively. Introduction of a single N-glycan caused 83% of the growth hormone to be secreted at the apical surface in MDCK cells but had no significant effect on the polarity of secretion of growth hormone in ECV304 cells. These results indicate that not all cell lines recognise N-glycans as a signal for apical sorting and raises the possibility of using ECV304 cells as a model system for analysis of apical sorting molecules.  相似文献   

9.
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of ethanol and phenylethanol on the growth of and glycoprotein secretion by Trichoderma reesei were studied. Low levels (1.5%, vol/vol) of ethanol perturbed the glycosylation process, as shown by alterations in the isoelectric profile of the secreted proteins and a reduction in the rate of incorporation of mannose into oligosaccharides. In addition to these effects on posttranslational modification, ethanol drastically lowered the protein secretion level of a hypersecretory strain.  相似文献   

11.
In avian species, a glycoprotein homologous to mammalian ZPC is synthesized in the granulosa cells of developing follicles. We have previously reported that the newly synthesized ZPC (proZPC) in the granulosa cells is cleaved at the consensus furin cleavage site to generate mature ZPC prior to secretion. In the present study, we examined the role of asparagine (N)-linked oligosaccharides in the proteolytic processing of proZPC and the subsequent secretion of ZPC by using site-directed mutagenesis of the consensus sequence for N-glycosylation, and tunicamycin, an inhibitor for N-glycosylation of glycoprotein. Western blot analysis demonstrated that tunicamycin did not block either proteolytic cleavage of proZPC or the subsequent ZPC secretion. Moreover, a site-directed mutant that possesses a mutated sequence for N-glycosylation was efficiently secreted from the cells. These results indicate that proteolytic cleavage of proZPC, and the subsequent ZPC secretion occur in the absence of N-linked oligosaccharides. Therefore, the addition of N-glycans to ZPC polypeptide is not required for quail ZPC secretion.  相似文献   

12.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

13.
Expression of decorin using the vaccinia virus/T7 expression system resulted in secretion of two distinct glycoforms: a proteoglycan substituted with a single chondroitin sulfate chain and N-linked oligosaccharides and a core protein glycoform substituted with N-linked glycans but without a glycosaminoglycan chain. In this report, we have addressed two distinct questions. What is the rate-limiting step in glycosaminoglycan synthesis? Is glycosylation with either N-linked oligosaccharides or glycosaminoglycan required for secretion of decorin? N-terminal sequencing of the core protein glycoform, the addition of benzyl-beta-d-xyloside, and a UDP-xylose: core protein beta-d-xylosyltransferase activity assay show that xylosylation is a rate-limiting step in chondroitin sulfate biosynthesis. Decorin can be efficiently secreted with N-linked oligosaccharides alone or with a single chondroitin sulfate chain alone; however, there is severely impaired secretion of core protein devoid of any glycosylation. A decorin core protein mutant devoid of N-linked oligosaccharide attachment sites will not be secreted by Chinese hamster ovary cells deficient in xylosyltransferase or by parental Chinese hamster ovary wild type cells if the xylosyltransferase recognition sequence is disrupted. This finding suggests that quality control mechanisms sensitive to an absence of N-linked oligosaccharides can be abrogated by interaction of the core protein with the glycosaminoglycan synthetic machinery. We propose a model of regulation of decorin secretion that has several components, including appropriate substitution with N-linked oligosaccharides and factors involved in glycosaminoglycan synthesis.  相似文献   

14.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

15.
应用能阻断糖蛋白N-糖链合成的衣霉素(TM),研究了N-糖链缺失对HT1080细胞分泌纤连蛋白(Fn)以及纤连蛋白受体(FnR)与配体结合的影响。结果发现,1μg/ml的TM可抑制N-糖链的合成(此时,3H-甘露糖掺入下降63%),但细胞分泌Fn的量仅下降33%,这主要是由于蛋白合成受TM抑制(25%)而引起,因而,N-糖链缺失可能并不影响Fn的分泌。而在同样条件下,单个细胞结合125I-Fn的量显著下降,显示N-糖链的缺失可能导致了膜上FnR总量或其与配体结合的亲和力的改变。TM处理组的FnR的内吞率与对照组相比较无明显差异,提示受体分子中的N-糖链缺失不影响其内吞过程.  相似文献   

16.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

17.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

18.
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a beta-glucuronidase reporter enzyme that is inhibited by N-linked glycosylation specific to the secretory pathway. Treatment of seedlings with tunicamycin inhibits glycosylation, resulting in increased activity of secreted beta-glucuronidase fusions that result from gene trap integration downstream of exons encoding signal peptides. In the 2,059 gene trap lines that we screened, 32 secretion trap expression patterns were identified in a wide variety of tissues including embryos, meristems, and the developing vasculature. Genes disrupted by the secretion traps encode putative extracellular signaling proteins, membrane transport proteins, and novel secreted proteins of unknown function missed by conventional mutagenesis and gene prediction. Secretion traps provide a unique reagent for gene expression studies and can guide the genetic combination of loss of function alleles in related genes.  相似文献   

19.
Degradation of streptokinase (SK) has been frequently observed during large-scale protein production. An enhanced susceptibility of SK to degradation has been correlated with its existence in a partially unfolded state. The influence of the carbohydrate moiety on the stability and functional characteristics of SK has been examined by obtaining the glycoform of SK following its secretion through the methylotrophic yeast Pichia pastoris. Secretion of the protein product was achieved by replacing the native secretion signal codons of SK with those from α-factor leader peptide and expressing the fusion construct under the control of the methanol-inducible alcohol oxidase (ox) promoter of P. pastoris after its integration into the host chromosome. Western blot and zymographic analysis of proteins secreted from the recombinant P. pastoris indicated that SK was glycosylated by the host cells, which resulted in the appearance of a SK species migrating slowly, corresponding to a 55-kDa protein product as compared to the 47-kDa native SK. The glycosylated SK retained a plasminogen activation capability identical to that of its unglycosylated counterpart. Glycoform SK exhibited an enhanced stability profile at 25 °C and 37 °C and improved resistance towards protease treatment compared to unglycosylated SK secreted through P. pastoris after tunicamycin treatment or that secreted from the recombinant Escherichia coli. The results presented thus illustrate that N-linked glycosylation of SK results in 30–40% enhancement of the protein stability and resistance towards degradation but does not interfere with its fibrinolytic function. Received: 1 March 1999 / Received last revision: 5 October 1999 / Accepted: 10 October 1999  相似文献   

20.
The cytotoxic drug tunicamycin kills cells because it is a specific inhibitor of UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-P transferase (GPT), an enzyme that catalyzes the initial step of the biosynthesis of dolichol-linked oligosaccharides. In the presence of tunicamycin, asparagine-linked glycoproteins made in the endoplasmic reticulum are not glycosylated with N-linked glycans, and therefore may not fold correctly. Such proteins may be targeted for breakdown. Cells that are treated with tunicamycin normally experience an unfolded protein response and induce genes that encode endoplasmic reticulum chaperones such as the binding protein (BiP). We isolated a cDNA clone for Arabidopsis GPT and overexpressed it in Arabidopsis. The transgenic plants have a 10-fold higher level of GPT activity and are resistant to 1 microg/mL tunicamycin, a concentration that kills control plants. Transgenic plants grown in the presence of tunicamycin have N-glycosylated proteins and the drug does not induce BiP mRNA levels as it does in control plants. BiP mRNA levels are highly induced in both control and GPT-expressing plants by azetidine-2-carboxylate. These observations suggest that excess GPT activity obviates the normal unfolded protein response that cells experience when exposed to tunicamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号