首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

2.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

3.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

5.
Two types of plasminogen activator (PA), t-PA (tissue type) and u-PA (urokinase type), are released from endometrial tissue in organ culture, as judged by immunological identification and molecular weight. Addition of estradiol to the medium greatly enhanced the release of u-PA, whereas that of t-PA was not low. Addition of progesterone, on the other hand, after priming of the endometrial tissue with estradiol, resulted in a much lower release of both types of PA. This pattern of PA release in response to hormonal stimulation in vitro agrees with previous observations of the PA activity of endometrial secretion in vivo. Endometrial tissue also released a PA inhibitor with molecular weight of approximately 50,000, which complexed both t-PA and u-PA. In cultures stimulated with estradiol the amount of free u-PA increased gradually during incubation and minor amounts of free t-PA appeared after 4-6 days culture. The amount of complexes, and thus the amount of PA inhibitor also increased under influence of estradiol. In cultures stimulated with progesterone, on the other hand, only minor amounts of free u-PA and no free t-PA was detected. The inhibitor might be of either the endothelial or the placental type, or both.  相似文献   

6.
Plasminogen activators (PA) convert the inactive proenzyme plasminogen into plasmin, which is involved in the process of fibrinolysis, tissue remodeling, and cell migration. There are two distinct forms of PA: urokinase (u-PA) and tissue-type plasminogen activator (t-PA). t-PA has higher affinity for fibrin and is the main form involved in thrombolysis. By in situ chromosomal hybridization and Southern blot analysis of somatic cell hybrid DNA, we have assigned the human t-PA gene to chromosome 8, bands 8p12----q11.2. We have detected a common EcoRI restriction fragment length polymorphism within the t-PA gene that thus provides a precisely localized highly informative marker for genetic linkage studies. The t-PA gene localization coincides with a translocation breakpoint observed in myeloproliferative disorders. Whereas leukemic cells usually secrete both types of PA, a correlation exists between acute myeloid leukemic cells that release only t-PA and failure to respond to chemotherapy.  相似文献   

7.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

8.
Interleukin 1, derived from human placenta, stimulates plasminogen activator activity in human articular chondrocytes. The stimulation of plasminogen activator activity can be abolished by preincubation of placental interleukin 1 with an antiserum to homogeneous 22K factor, a species of interleukin 1 beta, indicating that the stimulation of plasminogen activator activity is due to interleukin 1 and not contaminating factors. Chondrocytes produce three species of plasminogen activator, with apparent Mr approximately 50,000, 65,000 and 100,000 as determined after sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis with gels containing casein and plasminogen. Both placental interleukin 1 and 22K factor enhance the production of the species of Mr approximately 65,000 and 100,000. Comparison of the mobility of the plasminogen activator species on SDS-polyacrylamide gel electrophoresis with human urokinase (u-PA) and human melanoma tissue-type plasminogen activator (t-PA) and studies with antibodies to these enzymes indicate that the Mr approximately 50,000 species is a u-PA and the Mr approximately 65,000 a t-PA. The Mr approximately 100,000 species is possibly an enzyme-inhibitor complex. Interleukin 1 therefore appears to enhance the production of t-PA and a putative enzyme-inhibitor complex. Abolition of plasminogen activator activity in the fibrin plate assay with antibodies to t-PA and u-PA also confirms enhanced t-PA production on interleukin 1 stimulation, though there is also evidence for increased cell-associated production of u-PA.  相似文献   

9.
We report here that human astrocytoma cell line U373-MG is able to express genes of the following components of plasminogen activation system: PA1-1, PN-1, u-PA and t-PA. Treatment of these cells with IL-1beta results in accumulation of PA1-1, PN-1 and u-PA mRNAs, whereas t-PA mRNA remains unaffected. IFNy preferentially enhances PN-1 and PA1-1, EGF enhances PA1-1, u-PA and t-PA expression. Simultaneous addition of anti-inflammatory cytokines IL-4, IL-13 and IL-10 has little effect on the tested components, except induction of u-PA mRNA wich was further enhanced by IL-4. We have confirmed interesting time-dependent regulation of plasminogen activation system by EGF/IFNgamma. Cells stimulated with EGF/IFNgamma show at first increased proteolytic activity but after 24 h inhibition of proteolysis with PA1-1 would prevail. To understand the cooperative effect of EGF and IFNgamma in PA1-1 induction the kinetics of activation of STAT1 was studied. It was found that although EGF alone does not activate STAT1, the STAT1 binding activity in the cells treated with the mixture of EGF/IFNgamma was considerably prolonged. Our results indicate the importance of inflammatory cytokines and EGF in gene regulation of plasminogen activation system in astrocytoma cells.  相似文献   

10.
The tissue-specific distribution of tissue-type and urokinase-type plasminogen activator (t-PA and u-PA) and their inhibitor type 1 (PAI-1) was analyzed at mRNA level in five major rat organ tissues. t-PA mRNA was detected in lung, kidney, heart, and liver. u-PA mRNA was detected in kidney and lung. Presence of PA mRNA correlated with the detection of PA activity in extracts of these tissues. PAI-1 mRNA was detected predominantly in heart and lung. Although PAI activity could not be measured directly in tissue extracts, the presence of PAI-1 mRNA correlated with the occurrence of PA.PAI complex in fibrin autography of tissue extracts. Endotoxin injection caused a very large increase in plasma PAI activity. This increase correlated with a marked increase in PAI-1 mRNA in nearly all tissues studied. The increase in PAI-1 mRNA is most pronounced in lung and liver. Endotoxin injection also caused an increased level of t-PA mRNA in heart and kidney, and an increased u-PA mRNA level in kidney. mRNA analysis of freshly isolated and separated subfractionated liver cells showed that the marked increase in PAI-1 mRNA in the liver after endotoxin injection may be due mainly to a strong increase of PAI-1 mRNA in the liver endothelial cells.  相似文献   

11.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

12.
The dissolution of blood clots by plasmin is normally initiated in vivo by the activation of plasminogen to plasmin through the activity of tissue plasminogen activator (t-PA). The rate of plasminogen activation can be stimulated several orders of magnitude by the presence of fibrin-related proteins. Here we describe the kinetic analysis of both recombinant human t-PA (wild-type) and a t-PA variant produced by site-directed mutagenesis in which the original sequence from amino acids 296 to 299, KHRR, has been altered to AAAA. This tetra-alanine variant form of t-PA, K296A/H297A/R298A/R299A t-PA, we refer to as "KHRR" t-PA here. The plasminogen activating kinetics of wild-type t-PA (Activase alteplase) showed a catalytic efficiency which changed over 100-fold dependent on the stimulator in the assay. The lowest rate was in the absence of a stimulator. The following stimulators showed increasing ability to accelerate the catalytic efficiency of the reaction: fibrinogen, fragments of fibrinogen obtained by digestion with plasmin, fibrin, and slightly degraded fibrin. This increase in efficiency was driven primarily by decreases in the Michaelis constant (KM) of the reaction, whereas the catalytic rate constant (kcat) of the reaction did not change significantly. The "KHRR" variant of t-PA displayed novel kinetics with all stimulators tested. In the absence of a stimulator or with the poorer stimulators (fibrinogen and fibrinogen fragments), the KM values of the reaction with Activase alteplase and "KHRR" t-PA were similar. The kcat however, was lower with "KHRR" t-PA than with wild-type t-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another.  相似文献   

14.
Melanoma cells produce tissue plasminogen activator (t-PA) that plays an important role in tumor invasion and metastasis. The production of t-PA by normal human uveal melanocytes has not been reported previously. In order to explore this possibility, we studied the production of t-PA by cultured human uveal melanocytes and compared that with the production by cultured human uveal melanoma cells and epidermal melanocytes. Human adult uveal melanocytes were isolated and cultured from donor eyes. The cells were cultured in serum-free medium for 48 h and the conditioned medium then collected for the plasminogen activator (PA) activity assay. Free PA activity was tested in an amidolytic assay using a t-PA standard curve. PA type was identified by fibrinography and antihuman t-PA and urokinase plasminogen activator (u-PA) blocking antibodies. Free PA activity was found in the conditioned medium of normal melanocytes and melanoma cells. The predominant PA activity was t-PA. Normal uveal melanocytes produced more t-PA (3.23 +/- 0.73 IU/105 cells/24 h) than that of epidermal melanocytes (1.25 IU/105 cells/24 h) but much less than uveal melanoma cells (11.0 +/- 3.39 IU/105 cells/24 h). Western blot analysis revealed that most t-PA in conditioned media were one-chain t-PA with molecular weight of 69 kDa. Our study indicates that uveal melanocytes may contribute to the free t-PA activity previously found in aqueous humor and choroidal eye cup superfusions. Therefore, this function of uveal melanocytes may play a role in intraocular matrix remodeling, fibrinolysis and aqueous humor outflow.  相似文献   

15.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

16.
Incubation of plasminogen with the subendothelial extracellular matrix (ECM) synthesized by cultured bovine corneal and aortic endothelial cells resulted in generation of fibrinolytic activity, indicated by proteolysis of 125I-fibrin in a time-and dose-dependent manner. Both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) were identified in the ECM by fibrin zymography, immunoblotting, and inhibition of plasminogen activation by anti-u-and anti-t-antibodies. Most of the ECM-resident plasminogen activator (PA) activity did not originate from intracellular PA release occurring when the endothelial cells were lyzed and the ECM exposed, since a comparable amount of PA was associated with the ECM when the cells were lyzed with Triton X-100 or removed intact by treatment with 2 M urea. Active u-PA and t-PA were released from ECM by treatment with heparanase (endo-β-D-), indicating that some of the ECM-resident PA activity is sequestered by heparan sulfate side chains. These results indicate that both u-PA and t-PA produced by endothelial cells are firmly sequestered in an active form by the subendothelial ECM. It is suggested that ECM-resident plasminogen activators participate in sequential matrix degradation during cell invasion and tumor metastasis. PA activity may also function in release of ECM-bound growth factors (i.e., basic fibroblast growth factor) and activation of proenzymes (i.e., prothrombin), resulting in modulation of the ECM growth-promoting and thrombogenic properties. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Human blood monocytes in culture differentiate to macrophagelike cells within 1 week. Coinciding with this morphological transition the cells started releasing increasing amounts of the serine proteinase plasminogen activator (PA; Mr 56,000) of the urokinase (u-PA) type and the proteinase inhibitor alpha-2-macroglobulin (alpha 2M). Unlike the cell-associated PA activity, which was also readily detected in fresh monocytes, the activity secreted into the serum-free culture medium could be measured only after treatment of the samples with sodium dodecyl sulphate. Heat or acid treatment of the medium was not sufficient to reveal the PA activity, suggesting that, apart from alpha 2M, another PA-inhibiting substance was present in the culture medium. The inhibitor (Mr 65,000) was found to be synthesized by macrophages and specifically inhibited u-PA activity but not tissue-type PA (t-PA) or plasmin activity. Dexamethasone decreased the secretion of PA by differentiated macrophages without affecting the production of alpha 2M or the PA inhibitor. Dexamethasone also inhibited the morphological differentiation of the cells when added to the monocyte-phase cells.  相似文献   

18.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

19.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

20.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号