首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed at directly assessing glucose 6-phosphate (G6P) transport by intact rat liver microsomes. Tracer uptake from labeled G6P occurred with T(1/2) values that proved insensitive to unlabeled G6P or 100 microM vanadate, and could not be activated over background levels by intravesicular phosphate in the complete absence of G6P hydrolysis. [(32)P]Phosphate efflux was similarly unaffected by G6P or phosphate in the incubation medium. We conclude that the gene product responsible for glycogen storage disease type Ib is functionally distinct from the bacterial hexose phosphate transporter, which operates as an obligatory phosphate:phosphate or G6P:phosphate exchanger.  相似文献   

2.
3.
Deficiency of the glycogen debranching enzyme (gene, AGL) causes glycogen storage disease type III (GSD-III), an autosomal recessive disease affecting glycogen metabolism. Most GSD-III patients have AGL deficiency in both the liver and muscle (type IIIa), but some have it in the liver but not muscle (type IIIb). Cloning of human AGL cDNAs and determination of the genomic structure and mRNA isoforms of AGL have allowed for the study of GSD-III at the molecular level. In turn, the resulting information has greatly facilitated our understanding of the molecular basis of this storage disease with remarkable clinical and enzymatic variability. In this review, we summarize all 31 GSD-III mutations in the literature and discuss their clinical and laboratory implications. Most of the mutations are nonsense mutations caused by a nucleotide substitution or small insertion or deletion; only one is caused by a missense amino acid change. Some important genotype-phenotype correlation have emerged, in particular, that exon 3 mutations (17delAG and Q6X) are specifically associated with GSD-IIIb. Three other mutations have appeared to have some phenotype correlation. Specifically, the splice mutation IVS32-12A>G was found in GSD-III patients having mild clinical symptoms, while the mutations 3965delT and 4529insA are associated with a severe phenotype and early onset of clinical manifestations. A molecular diagnostic scheme has been proposed to diagnose GSD-III noninvasively. The characterization of AGL mutations in GSD-III patients has also helped the structure-function analysis of this bifunctional enzyme important for glycogen metabolism.  相似文献   

4.
Almqvist J  Huang Y  Hovmöller S  Wang DN 《Biochemistry》2004,43(29):9289-9297
Glycogen storage disease type Ib is caused by mutations in the glucose 6-phosphate transporter (G6PT) in the endoplasmic reticulum membrane in liver and kidney. Twenty-eight missense and two deletion mutations that cause the disease were previously shown to reduce or abolish the transporter's activity. However, the mechanisms by which these mutations impair transport remain unknown. On the basis of the recently determined crystal structure of its Escherichia coli homologue, the glycerol 3-phosphate transporter, we built a three-dimensional structural model of human G6PT by homology modeling. G6PT is proposed to consist of 12 transmembrane alpha-helices that are divided into N- and C-terminal domains, with the substrate-translocation pore located between the two domains and the substrate-binding site formed by R28 and K240 at the domain interface. The disease-causing mutations were found to occur at four types of positions: (I) in the substrate-translocation pore, (II) at the N-/C-terminal domain interface, (III) in the interior of the N- and C-terminal domains, and (IV) on the protein surface. Whereas class I mutations affect substrate binding directly, class II mutations, mostly involving changes in side chain size, charge, or both, hinder the conformational change required for substrate translocation. On the other hand, class III and class IV mutations, often introducing a charged residue into a helix bundle or at the protein-lipid interface, probably destabilize the protein. These results also suggest that G6PT operates by a similar antiport mechanism as its E. coli homologue, namely, the substrate binds at the N- and C-terminal domain interface and is then transported across the membrane via a rocker-switch type of movement of the two domains.  相似文献   

5.
Glycogen storage disease type 1a (GSD-1a), characterized by hypoglycemia, liver and kidney enlargement, growth retardation, hyperlipidemia, and hyperuricemia, is caused by a deficiency in glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis. To evaluate the feasibility of gene replacement therapy for GSD-1a, we have infused adenoviral vector containing the murine G6Pase gene (Ad-mG6Pase) into G6Pase-deficient (G6Pase(-/-)) mice that manifest symptoms characteristic of human GSD-1a. Whereas <15% of G6Pase(-/-) mice under glucose therapy survived weaning, a 100% survival rate was achieved when G6Pase(-/-) mice were infused with Ad-mG6Pase, 90% of which lived to 3 months of age. Hepatic G6Pase activity in Ad-mG6Pase-infused mice was restored to 19% of that in G6Pase(+/+) mice at 7-14 days post-infusion; the activity persisted for at least 70 days. Ad-mG6Pase infusion also greatly improved growth of G6Pase(-/-) mice and normalized plasma glucose, cholesterol, triglyceride, and uric acid profiles. Furthermore, liver and kidney enlargement was less pronounced with near-normal levels of glycogen depositions in both organs. Our data demonstrate that a single administration of a recombinant adenoviral vector can alleviate the pathological manifestations of GSD-1a in mice, suggesting that this disorder in humans can potentially be corrected by gene therapy.  相似文献   

6.
Glycogen storage disease type 1 (GSD 1) results from deficiency of the microsomal multicomponent glucose-6-phosphatase system. Malfunction of the catalytic subunit characterises GSD 1a. GSD 1b and GSD 1c are characterised by defective microsomal glucose-6-phosphate or pyrophosphate/phosphate transport, respectively. Recently, a gene encoding a microsomal transporter protein has been found to be mutated in GSD 1b and 1c patients. Here, we report the genomic sequence of the transporter gene and the detection of a homozygous 2-bp deletion (1211delCT) and a homozygous donor splice site mutation (317+1G→T) in two GSD 1c patients, confirming that GSD 1c is allelic to GSD 1b. Received: 16 October 1998 / Accepted: 11 January 1998  相似文献   

7.
8.
Prenatal diagnosis for type III glycogen storage disease was performed by using (1) immunoblot analysis with a polyclonal antibody prepared against purified porcine-muscle debranching enzyme and (2) a qualitative assay for debranching-enzyme activity. Cultured amniotic fluid cells from three pregnancies (three families in which the proband had absence of debrancher protein) were subjected to immunoblot analysis. Two unaffected and one affected fetus were predicted. In addition, cultured amniotic fluid cells from nine pregnancies (eight families) were screened with a qualitative assay based on the persistence of a polysaccharide that has a structure approaching that of a phosphorylase limit dextrin when the cells were exposed to a glucose-free medium. This qualitative assay predicted six unaffected and three affected fetuses. All predictions by either method were confirmed postnatally except for one spontaneously aborted fetus. Our data indicate that a definitive diagnosis of type III glycogen storage disease can be made prenatally by these methods.  相似文献   

9.
Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-α (G6Pase-α) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.  相似文献   

10.
11.
Neutral oligosaccharides were isolated from urine of an adult patient with glycogen storage disease type II, a deficiency of lysosomal acid alpha-glucosidase, by chromatography on columns of activated charcoal, Dowex 50 X 2 and Dowex 1 X 2. Total neutral oligosaccharides in the urine of the patient were increased about 5-fold as compared with those in normal controls. The most accumulated oligosaccharide was separated by Bio-Gel P-2 column chromatography, and finally purified by paper chromatography. Based on various studies, including carbohydrate analysis, chemical ionization mass spectrometry, fast atom bombardment mass spectrometry, degradation by glucoamylase and isopullulanase, and methylation analysis, the structure of this oligosaccharide was deduced to be Glc alpha 1----6Glc alpha 1----4Glc alpha 1----4Glc. This oligosaccharide appears to be accumulated in urine of the patient with acid alpha-glucosidase deficiency as an end product of the hydrolysis of glycogen.  相似文献   

12.
13.
Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A > T/c.648G > T. Our report expands the spectrum of G6Pase gene mutation in China.  相似文献   

14.
15.
16.
17.
18.
《Autophagy》2013,9(11):1697-1700
The autophagy-lysosome system is essential for muscle cell homeostasis and its dysfunction has been linked to muscle disorders that are typically distinguished by massive autophagic buildup. Among them, glycogen storage disease type II (GSDII) is characterized by the presence of large glycogen-filled lysosomes in the skeletal muscle, due to a defect in the lysosomal enzyme acid α-glucosidase (GAA). The accumulation of autophagosomes is believed to be detrimental for myofiber function. However, the role of autophagy in the pathogenesis of GSDII is still unclear. To address this issue we monitored autophagy in muscle biopsies and myotubes of early and late-onset GSDII patients at different time points of disease progression. Moreover we also analyzed muscles from patients treated with enzyme replacement therapy (ERT). Our data suggest that autophagy is a protective mechanism that is required for myofiber survival in late-onset forms of GSDII. Importantly, our findings suggest that a normal autophagy flux is important for a correct maturation of GAA and for the uptake of recombinant human GAA. In conclusion, autophagy failure plays an important role in GSDII disease progression, and the development of new drugs to restore the autophagic flux should be considered to improve ERT efficacy.  相似文献   

19.
The autophagy-lysosome system is essential for muscle cell homeostasis and its dysfunction has been linked to muscle disorders that are typically distinguished by massive autophagic buildup. Among them, glycogen storage disease type II (GSDII) is characterized by the presence of large glycogen-filled lysosomes in the skeletal muscle, due to a defect in the lysosomal enzyme acid α-glucosidase (GAA). The accumulation of autophagosomes is believed to be detrimental for myofiber function. However, the role of autophagy in the pathogenesis of GSDII is still unclear. To address this issue we monitored autophagy in muscle biopsies and myotubes of early and late-onset GSDII patients at different time points of disease progression. Moreover we also analyzed muscles from patients treated with enzyme replacement therapy (ERT). Our data suggest that autophagy is a protective mechanism that is required for myofiber survival in late-onset forms of GSDII. Importantly, our findings suggest that a normal autophagy flux is important for a correct maturation of GAA and for the uptake of recombinant human GAA. In conclusion, autophagy failure plays an important role in GSDII disease progression, and the development of new drugs to restore the autophagic flux should be considered to improve ERT efficacy.  相似文献   

20.
Kim SY  Chen LY  Yiu WH  Weinstein DA  Chou JY 《FEBS letters》2007,581(20):3833-3838
Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-alpha manifest a disturbed glucose homeostasis. We hypothesized that disturbed glucose homeostasis might affect myeloid functions. Here, we show that GSD-Ia mice exhibit normal neutrophil activities but have elevated myeloid progenitor cells in the bone marrow and spleen. Interestingly, GSD-Ia mice exhibit a persistent increase in peripheral blood neutrophil counts along with elevated serum levels of granulocyte colony stimulating factor and cytokine-induced neutrophil chemoattractant. Taken together, our results suggest that a loss of glucose homeostasis can compromise the immune system, resulting in neutrophilia. This may explain some of the unexpected clinical manifestations seen in GSD-Ia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号