首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to clarify the distribution of the ear side of mobile phone use in the general population of Japan and clarify what factors are associated with the ear side of mobile phone use. Children at elementary and junior high schools (n = 2,518) and adults aged ≥20 years (n = 1,529) completed an Internet‐based survey. Data were subjected to a logistic regression analysis. In children, due to the tendency to use the dominant hand, we analyzed the factors associated with the use of right ear in right‐handed people. Statistically significant differences were observed only in talk time per call (odds ratio (OR) = 2.17; 95% confidence interval (CI): 1.22–3.99). In adults, due to the tendency to use the left ear, we analyzed factors associated with the use of left ear in right‐handed people. Significant differences were observed in those aged 30–39 years (OR = 2.55; 95% CI: 1.79–3.68), those aged 40–49 years (OR = 3.08; 95% CI: 2.15–4.43), those aged >50 years (OR = 1.85; 95% CI: 1.20–2.85), and in those with a percentage of total talk time when using mobile phones at work of 51–100% (OR = 1.75; 95% CI: 1.21–2.55). We believe that future epidemiological studies on mobile phone use can be improved by considering the trends in mobile phone use identified in this study. Bioelectromagnetics. 39:53–59, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
The problem is reviewed of sex differences and the brain organization of the visual-spatial and verbal-cognitive functions both in adults and in the 5–15-year old children. Characteristic of men are the integral strategy of the face image recognition, specialization of the right hemisphere for visual-spatial functions, and the tonic inhibitory effect of the right hemisphere on the left one. Typical of women are the fragmented type of the image recognition, the equality of the brain hemispheres functions at the unfamiliar face recognition, and predominance of the left hemisphere by accuracy of the object localization in the visual field. It is possible that the general strategy of the recognition in women is not realized due to the right hemisphere submitted to the interfering effect of the left hemisphere. Analysis of sex differences in distribution of verbal functions shows that the capability for the verbal learning at the age of 5 years and older is higher in girls than in boys. Such capability seems to be accounted for by the superiority of the left hemisphere in girls in this type of its activity and by its earlier development and maturation. The phenomenon of semantic paralexia appearing more often in boys is accounted for by inclusion of lexical-semantic fields of the right hemisphere symmetric areas in the verbal-cognitive activity There are reasons to believe that the higher capability in girls for the verbal learning is mainly due to processes of the auditory-verbal integration within the limits of the left hemisphere, whereas this verbal ability in boys depends on the relative predominance of the interhemispheric connections.  相似文献   

3.
Magnetoencephalographic (MEG) responses of both auditory cortices to simple auditory stimuli presented monaurally to either ear were recorded from a single subject. A distributed current model and a current dipole model were used to analyse the responses at the latency of the dominant N1m complex. At the N1m the current density was localised to a single area and was consequently well modelled by a single current dipole close to the peak current density. In the left hemisphere, the contralateral response (as identified by the peak current density) preceded the ipsilateral response by 3 msec. This value was 7 msec for the right hemisphere. Evidence was found in the right hemisphere of a posterior-anterior movement along the sylvian fissure. Also, the left hemisphere N1m sources were all represented more posterior than the right hemisphere N1m sources.  相似文献   

4.
Asymmetry of movement direction was found in Wistar rats at establishing of motor alimentary conditioned reflex to simultaneously presented visual stimuli. In the course of learning the asymmetry weakened on the whole, but some individuals retained right- or left side preference. The analysis of asymmetry change before and after unilateral cortical inactivation revealed a special role of right hemisphere influences for the formation of right-side preference and of the left hemisphere--for the choice of the left direction. The lack of asymmetry was observed at the presence of the influences from the left hemisphere cortex depressing ipsilateral nigro-striate system and activating the contralateral one. Influences of the cortex of both hemispheres reduce the absolute value of the asymmetry coefficient; the left hemisphere has a special significance for manifestation of temporal asymmetry parameters. Photic interference is a factor modulating the asymmetry. It reduces the right hemisphere activity more than that of the left one; it intensifies right hemisphere influences, contributes to the involvement of the transcallosal conduction channel in the formation of spatial-motor asymmetry.  相似文献   

5.
Piller  Robert 《Dreaming》2009,19(4):273
Research has shown that certain individuals are able to carry out prearranged tasks while lucid dreaming, and that these tasks produce physiological effects on the body similar to what is observed during waking. It was hypothesized that the difficulty of performing cerebrally lateralized tasks during a lucid dream would vary with the dominant hemisphere for that task, with less difficulty for right hemisphere tasks. Twenty-seven participants rated the difficulty of performing three matched pairs of left hemisphere and right hemisphere tasks, first in a lucid dream, and later in their waking imagination. Results indicated right hemisphere dominance during lucid dreaming, especially among right-handed participants. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
We measured characteristics of evoked potentials, EPs, developing after presentation of significant tonal acoustic stimuli in subjects systematically engaged in music training (n = 7) and those having no corresponding experience (n = 10). The peak latencies of the P3 component in the left hemisphere of musicians were significantly shorter than those in non-musicians (on average, 279.9 and 310.2 msec, respectively). Musicians demonstrated no interhemisphere differences of the latencies of components N2, P3, and N3, while a trend toward asymmetry was obvious in non-musicians (the above components were generated somewhat later in the left hemisphere). The amplitudes of EP components demonstrated no significant intergroup differences, but the amplitude of the P3 wave was higher in the left hemisphere of non-musicians than that in the right hemisphere. Possible neurophysiological correlates of the observed specificity of EPs in the examined groups are discussed.  相似文献   

7.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

8.
One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging and tract-based spatial statistics (TBSS), aims at assessing, in a data-driven fashion, the contribution of structural disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS was modified to account for the presence of the lesion and used to assess the presence and extension of changes in diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to investigate, by correlation analysis, whether this damage might account for the presence and severity of patients'' neglect, as assessed by the Behavioural Inattention Test (BIT). None of the patients had any macroscopic abnormality in the left hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the corpus callosum and its projections on the parietal white matter. A region of association between patients'' scores at BIT and brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a major role of structural disconnection between the right and left parietal cortex in determining ‘neglect’.  相似文献   

9.
Forty normal-achieving and 33 learning disabled (LD) children were assigned randomly to either a negative ion or placebo test condition. On a dichotic listening task using consonant-vowel (CV) combinations, both groups showed an ioninduced increase in the normal right ear advantage (REA). However, the mechanisms for this effect were different for each group. The LDs showed the effect at the right ear/left hemisphere (enhancement). The normal achievers showed the effect at the left ear/right hemisphere (inhibition). The results are consistent with an activation-inhibition model of cerebral function and suggest a functional relationship between arousal, interhemispheric activation-inhibition, and learning disabilities. The LDs may have an interhemispheric dysfunction. Both groups showed superior right ear report and the normal achiever showed overall superiority. Normal achievers showed higher consonant intrusion scores, probably due to a greater cognitive capacity. Age was a significant covariate reflecting developmental capacity changes. Negative air ions are seen to be a tool with potential theoretical and remedial applications.  相似文献   

10.
During elaboration of a symmetric active defensive reflex, the animal is given the opportunity to make instrumental movements with the right or left paw. On the first day of elaboration, the cats can be subdivided into three approximately equal groups: with the right preferred paw, with the left preferred paw and ambidexters. After stabilization of the reflex, motor asymmetry increases in both preferred groups, while the number of ambidexters diminishes. Unilateral electric shock producing seizures, which is applied to the "dominant" or "subdominant" hemisphere, exerts correspondingly differing influences on the subsequent reproduction of the reflex. Suppression of reproduction is more pronounced when the shock is applied to the "dominant" hemisphere. The result of repetitive application of electroshock to one and the same hemisphere is that the functions of the "dominant" hemisphere are effected by the hemisphere which was not subjected to direct electrical stimulation.  相似文献   

11.
The present study investigates hemispheric asymmetries in the neural adaptation processes occurring during alternating auditory stimulation. Stimuli were two monaural pure tones having a frequency of 400 or 800 Hz and a duration of 500 ms. Electroencephalogram (EEG) was recorded from 14 volunteers during the presentation of the following stimulus sequences, lasting 12 s each: 1) evoked potentials (EP condition, control), 2) alternation of frequency and ear (FE condition), 3) alternation of frequency (F condition), and 4) alternation of ear (E condition). Main results showed that in the central area of the left hemisphere (around C3 site) the N100 response underwent adaptation in all patterns of alternation, whereas in the same area of the right hemisphere the tones presented at the right ear in the FE produced no adaptation. Moreover, the responses to right-ear stimuli showed a difference between hemispheres in the E condition, which produced less adaptation in the left hemisphere. These effects are discussed in terms of lateral symmetry as a product of hemispheric, pathway and ear asymmetries.  相似文献   

12.
Are visual face processing mechanisms the same in the left and right cerebral hemispheres? The possibility of such ‘duplicated processing’ seems puzzling in terms of neural resource usage, and we currently lack a precise characterization of the lateral differences in face processing. To address this need, we have undertaken a three-pronged approach. Using functional magnetic resonance imaging, we assessed cortical sensitivity to facial semblance, the modulatory effects of context and temporal response dynamics. Results on all three fronts revealed systematic hemispheric differences. We found that: (i) activation patterns in the left fusiform gyrus correlate with image-level face-semblance, while those in the right correlate with categorical face/non-face judgements. (ii) Context exerts significant excitatory/inhibitory influence in the left, but has limited effect on the right. (iii) Face-selectivity persists in the right even after activity on the left has returned to baseline. These results provide important clues regarding the functional architecture of face processing, suggesting that the left hemisphere is involved in processing ‘low-level’ face semblance, and perhaps is a precursor to categorical ‘deep’ analyses on the right.  相似文献   

13.
Complex analysis of EEG and thermographic parameters carried out in 10 healthy subjects and 34 patients, Chernobyl clean-up participants revealed a correlation between EEG and brain temperature changes in the baseline state and during mental arithmetic. During cognitive activity the maximal increase in the average EEG coherence and temperature shifts in healthy subjects were observed in the left frontotemporal and right parietotemporal areas. In patients changes in both parameters under study were most pronounced, the interhemispheric relations were impaired. The visual analysis revealed "flat" and "hypersynchronous" EEG types in patients. The dominant pathologic activity in the betal range indicative of mediobasal and oral brainstem lesions was characteristic of the flat EEG. This type of activity was observed in 60% of patients. In these cases, a general decrease in EEG coherence and temperature was most pronounced in the left hemisphere. The hypersynchronou EEG type (40% patients) was characterized by paroxysmal activity in the theta and alpha ranges suggesting diencephalic brain lesions. In these cases, EEG coherence and temperature were more variable; changes in the right hemisphere were significant, be it increase or decrease. Our complex approach to investigation of brain activity in different aspects seems to be promising in estimation of the brain functional state both in healthy persons and patients in remote terms after exposure to radiation. The specific hemispheric temperature changes revealed in Chernobyl patients especially during cognitive activity can be the sequels of postradiation disorders of vascular neuro-circulation. The EEG findings suggest subcortical disorders at different levels (diencephalic or brainstem) and functional failure of the right or left hemispheres in remote terms after exposure to radiation.  相似文献   

14.
The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing.  相似文献   

15.
A robust finding in the human neurosciences is the observation of a left hemisphere specialization for processing spoken language. Previous studies suggest that this auditory specialization and brain asymmetry derive from a primate ancestor. Most of these studies focus on the genus Macaca and all demonstrate a left hemisphere bias. Due to the narrow taxonomic scope, however, we lack a sense of the distribution of this asymmetry among primates. Further, although the left hemisphere bias appears mediated by conspecific calls, other possibilities exist including familiarity, emotional relevance and more general acoustic properties of the signal. To broaden the taxonomic scope and test the specificity of the apparent hemisphere bias, we conducted an experiment on vervets (Cercopithecus aethiops)-a different genus of old world monkeys and implemented the relevant acoustic controls. Using the same head orienting procedure tested with macaques, results show a strong left ear/right hemisphere bias for conspecific vocalizations (both familiar and unfamiliar), but no asymmetry for other primate vocalizations or non-biological sounds. These results suggest that although auditory asymmetries for processing species-specific vocalizations are a common feature of the primate brain, the direction of this asymmetry may be relatively plastic. This finding raises significant questions for how ontogenetic and evolutionary forces have impacted on primate brain evolution.  相似文献   

16.
The character of interaction between two dominant foci (motivation hunger dominant and "animal hypnosis") which had been formed in the rabbit brain was ambiguous: the foci could either function simultaneously or compete. In the first case, summation food reactions were observed when the hunger dominant was tested during a hypnotic episode against the background of deep and continuous hypnotic state. Brain thermal activity was asymmetric the temperature being higher in the parieto-occipital areas of the left hemisphere. If the hypnosis inhibited the hunger dominant, summation reactions were absent and the brain temperature was higher in the parieto-occipital areas of the right hemisphere. In cases when despite the repeated immobilization sessions the hunger dominant prevented from induction of hypnosis, the left-hemisphere thermal dominance persisted against the background of general brain cooling.  相似文献   

17.
Women and girls tend to cradle infants and dolls on the left side of the body. Left-sided cradling is found in chimpanzees and gorillas, is cross-cultural and present in historical works of art, and is transmitted down the human maternal line. One explanation for the left-cradling tendency is that it facilitates the flow of affective information from the infant via the left ear and eye to the center for emotional decoding, that is, the right hemisphere of the mother. We show that the developmental stability of the ear, as measured by ear asymmetry, is negatively correlated with the left-sided cradling tendency. Left-cradling English women holding infants and Jamaican girls holding dolls had a strong tendency to show lower ear asymmetry than right cradlers, whereas no such relationship was found in boys nor for various measures of asymmetry of the hand, with the possible exception of the wrist in Jamaican girls. Degree of handedness, as measured by the Annett peg-moving test, did not predict cradling preference in the Jamaican children, and the relationship between ear asymmetry and cradling preference was independent of hand preference. Our results suggest that developmental instability of the ear (including the pinna, external auditory meatus, and middle ear) may interfere with the flow of affective information to the right hemisphere. Ear asymmetry also showed evidence of strong maternal but not paternal transmission. It is suggested that between-individual variation of in utero stress may explain patterns of maternal transmission of lateral cradling tendencies.  相似文献   

18.
Gender differences in electroencephalographic activity (EEG) changes during navigation task performance after training were assessed in young adults. Female and male subjects were matched on initial navigation performance. EEG recordings were obtained while subjects navigated in an immersive virtual environment without visual cues, before and after a navigational skills training (9 sessions). In spite of task performance was similar in both groups, females showed higher theta band coherent activity between frontal and parietal and frontal and central regions than males before training. Correlation in theta band between fronto-central, fronto-parietal, and centro-parietal regions was enhanced in the left hemisphere for females but in the right hemisphere for males after training. Females also demonstrated a decreased in correlation in theta band over the right hemisphere between centro-parietal regions, whereas males demonstrated a similar effect over the left hemisphere. Navigation training seems to promote fronto-central-parietal synchronization in both genders but in different hemisphere. These results are interpreted as reflecting verbal-analytical working memory functions in females and global-spatial working memory mode in males.  相似文献   

19.
Motor lateralization is a behavioural asymmetry between the left and the right side of an individual due to hemispheric specialization. The right hemisphere controls the left side of the body and the left hemisphere the right side. The right hemisphere processes negative emotions such as fear and frustration, and on the contrary, the left hemisphere processes positive emotions such as happiness. This study, conducted at Parc Asterix Delphinarium (Plailly, France), tested the influence of supposedly positive, negative and neutral emotional situations on four California sea lions’ (Zalophus californianus) motor lateralization while performing a known exercise, here climbing on a stool. Latency between the caretakers’ command and the animals’ response was recorded. The results showed an interindividual variability in the effect of the supposed emotional situations on their motor lateralization and their response latency. The nature and the strength of this effect require deeper investigation by further studies, on a larger number of individuals and contexts.  相似文献   

20.
To justify neurophysiological correlates of depressive disorders, the spetral parameters of EEG, peak latencies of the “late” components of auditory cognitive evoked potentials, and latencies of sensorimotor reactions in middle age and elderly patients (aged 53–72 years) during therapy of prolonged psychogenic depressive reaction (F43.21 according to ICD-10) have been studied. Initial depression severity was associated to the EEG signs of decreased functional state of the anterior areas of the left hemisphere and increased activation of the right hemisphere (especially, its temporal areas). Pronounced improvement of clinical state under the affect of psychopharmacotherapy was accompanied by acceleration of the sensorimotor reactions, a decrease in peak latencies of the “late” components (P2, N2, and P3) of auditory cognitive evoked potentials and associated with the EEG signs of improvement of functional state of the posterior areas of the brain, an enforcement of inhibitory processes in the right hemisphere (especially, in its frontal, central, and temporal areas) and more pronounced activation of frontal areas of the left hemisphere. The data are in good agreement with the concept on the systemic character of impairments of brain functioning in depression, as well as on the preferential role of the left hemisphere in control of positive emotions and the right one, of negative emotions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号