首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.  相似文献   

2.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

3.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

4.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

5.
A conserved noncatalytic domain SH2 (for src homology region 2) is located immediately N terminal to the kinase domains of all cytoplasmic protein-tyrosine kinases. We found that the wild-type v-fps SH2 domain stimulated the enzymatic activity of the adjacent kinase domain 10-fold and functioned as a powerful positive effector of catalytic and transforming activities within the v-fps oncoprotein (P130gag-fps). Partial proteolysis of P130gag-fps and supporting genetic data indicated that the v-fps SH2 domain exerts its effect on catalytic activity through an intramolecular interaction with the kinase domain. Amino acid alterations in the SH2 domain that impaired kinase function interfered with association of the SH2 domain with the kinase domain. Deletion of a conserved octapeptide motif converted the v-fps SH2 domain from an activator to an inhibitor of tyrosine kinase activity. This latent inhibitory activity of v-fps SH2 has functional implications for phospholipase C-gamma and p21ras GTPase-activating protein, both of which have two distinct SH2 domains suggestive of complex regulation. In addition to regulating the specific activity of the kinase domain, the SH2 domain of P130gag-fps was also found to be required for the tyrosine phosphorylation of specific cellular proteins, notably polypeptides of 124 and 62 kilodaltons. The SH2 domain therefore appears to play a dual role in regulation of kinase activity and recognition of cellular substrates.  相似文献   

6.
Identification of RET autophosphorylation sites by mass spectrometry   总被引:4,自引:0,他引:4  
The catalytic and signaling activities of RET, a receptor-type tyrosine kinase, are regulated by the autophosphorylation of several tyrosine residues in the cytoplasmic region of RET. Some studies have revealed a few possible autophosphorylation sites of RET by [(32)P]phosphopeptide mapping or by using specific anti-phosphotyrosine antibodies. To ultimately identify these and other autophosphorylation sites of RET, we performed mass spectrometry analysis of an originally prepared RET recombinant protein. Both the autophosphorylation and kinase activity of myelin basic protein as an external substrate of the recombinant RET protein were substantially elevated in the presence of ATP without stimulation by a glial cell line-derived neurotrophic factor, a natural ligand for RET. Mass spectrometric analysis revealed that RET Tyr(806), Tyr(809), Tyr(900), Tyr(905), Tyr(981), Tyr(1062), Tyr(1090), and Tyr(1096) were autophosphorylation sites. Levels of autophosphorylation and kinase activity of RET-MEN2A (multiple endocrine neoplasia 2A), a constitutively active form of RET with substitution of Tyr(900) by phenylalanine (Y900F), were comparable with those of original RET-MEN2A, whereas those of the mutant Y905F were greatly decreased. Interestingly, those of a double mutant, Y900F/Y905F, were completely abolished. Both the kinase activity and transforming activity were impaired in the mutants Y806F and Y809F. These results provide convincing evidence for both previously suggested and new tyrosine autophosphorylation sites of RET as well as for novel functions of Tyr(806), Tyr(809), and Tyr(900) phosphorylation in both catalytic kinase activities and cell growth. The significance of the identified autophosphorylation sites in various protein-tyrosine kinases registered in a data base is discussed in this paper.  相似文献   

7.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

8.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

9.
Ligand stimulation of PDGF beta-receptors leads to autophosphorylation of the regulatory tyrosine 857 and of tyrosine residues that in their phosphorylated form serve as docking sites for Src homology 2 domain-containing proteins. Regulation of the PDGF beta-receptor by protein-tyrosine phosphatases is poorly understood. We have investigated PDGF beta-receptor dephosphorylation by receptor-like protein-tyrosine phosphatase DEP-1 using a cell line with inducible DEP-1 expression and by characterizing in vitro dephosphorylation of the PDGF beta-receptor and of receptor-derived phosphopeptides by DEP-1. After DEP-1 induction PDGF beta-receptor.DEP-1 complexes and reduced receptor tyrosine phosphorylation were observed. Phosphopeptide analysis of the PDGF beta-receptors from DEP-1-expressing cells and of the receptors dephosphorylated in vitro by DEP-1 demonstrated that dephosphorylation of autophosphorylation sites of the receptor differed and revealed that the regulatory Tyr(P)(857) was not a preferred site for DEP-1 dephosphorylation. When dephosphorylation of synthetic receptor-derived peptides was analyzed, the selectivity was reproduced, indicating that amino acid sequence surrounding the phosphorylation sites is the major determinant of selectivity. This notion is supported by the observation that the poorly dephosphorylated Tyr(P)(562) and Tyr(P)(857), in contrast to other analyzed phosphorylation sites, are surrounded by basic amino acid residues at positions -4 and +3 relative to the tyrosine residue. Our study demonstrates that DEP-1 dephosphorylation of the PDGF beta-receptor is site-selective and may lead to modulation, rather than general attenuation, of signaling.  相似文献   

10.
We recently reported that Arachis hypogaea serine/threonine/tyrosine (STY) protein kinase is developmentally regulated and is induced by abiotic stresses (Rudrabhatla, P., and Rajasekharan, R. (2002) Plant Physiol. 130, 380-390). Other than MAPKs, the site of tyrosine phosphorylation has not been documented for any plant kinases. To study the role of tyrosines in the phosphorylation of STY protein kinase, four conserved tyrosine residues were sequentially substituted with phenylalanine and expressed as histidine fusion proteins. Mass spectrometry experiments showed that STY protein kinase autophosphorylated within the predicted kinase ATP-binding motif, activation loop, and an additional site in the C terminus. The protein kinase activity was abolished by substitution of Tyr(297) with Phe in the activation loop between subdomains VII and VIII. In addition, replacing Tyr(148) in the ATP-binding motif and Tyr(317) in the C-terminal domain with Phe not only obliterated the ability of the STY protein kinase protein to be phosphorylated, but also inhibited histone phosphorylation, suggesting that STY protein kinase is phosphorylated at multiple sites. Replacing Tyr(213) in the Thr-Glu-Tyr sequence motif with Phe resulted in a 4-fold increase in autophosphorylation and 2.8-fold increase in substrate phosphorylation activities. Mutants Y148F, Y297F, and Y317F displayed dramatically lower phosphorylation efficiency (k(cat)/K(m)) with ATP and histone, whereas mutant Y213F showed increased phosphorylation. Our results suggest that autophosphorylation of Tyr(148), Tyr(213), Tyr(297), and Tyr(317) is important for the regulation of STY protein kinase activity. Our study reveals the first example of Thr-Glu-Tyr domain-mediated autoinhibition of kinases.  相似文献   

11.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

12.
c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.  相似文献   

13.
Protein-tyrosine phosphatase (PTP)-PEST is a cytoplasmic tyrosine phosphatase that can bind and dephosphorylate the focal adhesion-associated proteins p130(CAS) and paxillin. Focal adhesion kinase (FAK) and cell adhesion kinase beta (CAKbeta)/PYK2/CADTK/RAFTK are protein-tyrosine kinases that can colocalize with, bind to, and induce tyrosine phosphorylation of p130(CAS) and paxillin. Thus, we considered the possibility that these kinases might be substrates for PTP-PEST. Using a combination of substrate-trapping assays and overexpression of PTP-PEST in mammalian cells, CAKbeta was found to be a substrate for PTP-PEST. Both the major autophosphorylation site of CAKbeta (Tyr(402)) and activation loop tyrosine residues, Tyr(579) and Tyr(580), were targeted for dephosphorylation by PTP-PEST. Dephosphorylation of CAKbeta by PTP-PEST dramatically inhibited CAKbeta kinase activity. In contrast, FAK was a poor substrate for PTP-PEST, and treatment with PTP-PEST had no effect on FAK kinase activity. Tyrosine phosphorylation of paxillin, which is greatly enhanced by CAKbeta overexpression, was dramatically reduced upon coexpression of PTP-PEST. Finally, endogenous PTP-PEST and endogenous CAKbeta were found to localize to similar cellular compartments in epithelial and smooth muscle cells. These results suggest that CAKbeta is a substrate of PTP-PEST and that FAK is a poor PTP-PEST substrate. Further, PTP-PEST can negatively regulate CAKbeta signaling by inhibiting the catalytic activity of the kinase.  相似文献   

14.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Changing Glu-1025 to Asp in Fujinami sarcoma virus P130gag-fps made the protein temperature sensitive for transformation and protein-tyrosine kinase activity. Another mutant, Phe-1073 P130gag-fps, lacking the major autophosphorylation site, has an extended latent period for transformation (G. A. Weinmaster, M. J. Zoller, M. Smith, E. Hinze, and T. Pawson, Cell 37:559-568, 1984). By introducing the Asp-1025 lesion into Phe-1073 P130gag-fps, we showed that this mutant protein is required for the maintenance of the transformed phenotype of Phe-1073 P130gag-fps-expressing cells.  相似文献   

16.
Fujinami sarcoma virus (FSV) genome codes for the gag-fps fusion protein FSV-P130. The amino acid sequence of the 3' one-third portion in v-fps is partially homologous to the 3' half of pp60src, or the kinase domain, but the sequence of the 5' portion is unique to v-fps. To identify a possible domain structure in the v-fps sequence responsible for cell transformation, we constructed various deletion mutants of FSV with molecularly cloned viral DNA. Their transforming activities were assayed by measuring focus formation on chicken embryo fibroblasts and rat 3Y1 cells and tumor formation in chickens. The mutants carrying a deletion at the 3' portion in v-fps, the kinase domain, lost transforming activity. The mutants carrying an approximately 1-kilobase deletion within the 5' portion of the v-fps sequence retained focus-forming activity and tumorigenicity in the chicken system, but the efficiency of focus formation was about 10 times lower than that of the wild type. The morphology of these transformed cells was distinct from that observed in cells infected with wild-type FSV. Furthermore, these mutants could not transform rat 3Y1 cells, although wild-type FSV DNA transformed rat 3Y1 cells at a high frequency. The mutants carrying a larger deletion in the 5' portion of fps completely lacked the transforming activity. These results suggest that the 3' portion of the v-fps sequence is necessary but not sufficient for cell transformation and that the 5' portion of v-fps has a role in the transforming activity.  相似文献   

17.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

18.
Two novel sites of autophosphorylation were localized to the C-terminal tail of the PDGF beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants in which Tyr1009, Tyr1021 or both were replaced with phenylalanine residues, were expressed in porcine aortic endothelial (PAE) cells. These mutants were similar to the wild type receptor with regard to protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. However, both the Y1009F and Y1021F mutants showed a decreased ability to mediate association with and the tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) compared to the wild type PDGF beta-receptor; in the case of the Y1009F/Y1021F double mutant, no association or phosphorylation of PLC-gamma could be detected. These data show that tyrosine phosphorylation of PLC-gamma is dependent on autophosphorylation of the PDGF beta-receptor at Tyr1009 and Tyr1021.  相似文献   

19.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

20.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号