首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buenafe AC  Zwickey H  Moes N  Oken B  Jones RE 《Lab animal》2008,37(8):361-368
Dysfunction of the autonomic nervous system may be an important component of disease progression in multiple sclerosis (MS), a paralytic inflammatory autoimmune disease of the central nervous system. Using the experimental autoimmune encephalomyelitis mouse model of MS, the authors carried out a pilot study to investigate whether telemetric monitoring might be a feasible approach for detecting disturbances in the autonomic control of heart rate and blood pressure after disease induction. Telemetric monitoring devices that were implanted in mice provided useful information regarding the physiologic changes that accompanied disease induction and progression. Changes were observed in heart rate, blood pressure, heart rate variability and diurnal rhythm immediately before and after disease onset. The device implantation procedure did not seem to alter the course of disease. Further investigation may establish these methods as a system for studying the relationships between MS progression and autonomic regulation of physiological status.  相似文献   

2.
Heindl S  Vahlkamp K  Weitz G  Fehm HL  Dodt C 《Steroids》2006,71(3):206-213
Aim of the present study was to investigate the influence of hydrocortisone on muscle sympathetic nerve activity (MSNA) and hemodynamic parameters during different sympathoexcitatory manoeuvres in humans. The study focuses on the interaction of the hypothalamo-pituitary-adrenal system and the sympathetic nervous system. Hydrocortisone 100 mg or placebo was administered intravenously to eight young healthy subjects in a double-blind crossover design. After 6 h, blood pressure, heart rate and MSNA from the peroneal nerve were recorded at rest, during an arithmetic stress task, an apnea and a cold pressor test. Hydrocortisone treatment increased serum cortisol levels to the upper physiological range and suppressed basal levels of adrenocorticotropin. During mental stress, MSNA, heart rate and blood pressure levels were elevated independently of hydrocortisone pre-treatment. However, hydrocortisone induced a sustained increase in basal heart rate throughout the whole experiment. A stronger increase in diastolic blood pressure was observed during apnea and cold pressor test in the hydrocortisone experiments. MSNA or plasma catecholamines at rest or during the manoeuvres were not affected by hydrocortisone. The observed hydrocortisone effects may be due to an increased responsiveness of adrenergic receptors towards catecholamines or a central modulation of the baroreflex involving parasympathetic mechanisms. Further studies are needed to confirm that the increase in MSNA during mental stress does not depend on a concomitant activation of the hypothalamo-pituitary-adrenal system.  相似文献   

3.
The central nervous system effects of bombesin on cardiovascular function were examined in conscious, freely-moving rats. Intracerebroventricular administration of bombesin elevated mean arterial pressure, reduced heart rate and inhibited cold-induced tachycardia. Adrenalectomy prevented bombesin-induced elevations of mean arterial pressure. In contrast, bombesin-induced bradycardia was neither adrenal-dependent nor a baroreceptor-mediated reflex response to increased arterial pressure. Systemic atropine methyl nitrate treatment attenuated bombesin-induced bradycardia, suggesting that bombesin acts within the central nervous system to stimulate cardiac vagal activity.  相似文献   

4.
Vasopressin and electrophysiological signs of attention in man   总被引:1,自引:0,他引:1  
Seventeen pairs of monozygotic twins, females and males, were tested in a dichotic listening task, containing several types of pips: standard and deviating target pips, which the subject either attended to, or not. Averaged auditory evoked potentials (AEPs) to the pips provided measures of different attentional processes. Furthermore, EEG power spectra, heart rate and blood pressure and behavioral performance were measured. Subjects received treatments (20 I.U. lysine-vasopressin vs. placebo) intranasally 48, 24, and 1 hour prior to the experimental sessions according to a co-twin control design. Whereas measures of voluntary selective attention remained unchanged by lysine-vasopressin (LVP) the peptide primarily affected an attentional mechanism responding in an automatic fashion to stimulus deviance. This effect was indicated by a substantial negative shift of the AEP amplitudes following deviating stimuli within the latency range of the N2/P2 components (about 200 msec post-stimulus). The effect seemed to be unrelated to modulations of cortical arousal after LVP.  相似文献   

5.
The efferent mechanisms by which central administration of corticotropin-releasing factor (CRF) elevates mean arterial pressure and heart rate were assessed in unanesthetized, unrestrained rats. CRF increased blood pressure and heart rate by stimulating noradrenergic sympathetic nervous outflow. CRF-induced cardiovascular changes were not dependent on anterior pituitary hormone release, adrenomedullary epinephrine secretion, the renin-angiotensin system or circulating vasopressin.  相似文献   

6.
Angiotensin II (ANG II) causes a systemic pressor effect when injected into the cerebral ventricles. In the rat fourth ventricle, the effective doses for the ANG II pressor effect are over 100 times larger than in the systemic circulation. Considering the discrepancy of doses, the possibility that ANG II may reach the systemic circulation and promote pressor effects, following injection into the fourth ventricle, was investigated. The effects on blood pressure of different vasoactive peptides that produce pressor responses when injected into the central nervous system were compared. Dose-response curves were obtained for intravenous or fourth cerebroventricular injections of ANG II, lysyl-vasopressin (LVP), bradykinin (BK), or endothelin-1 (ET-1). The ED50 ratios for intracerebroventricular/intraveneous injections were 110 for ANG II, 109 for LVP, 0.01 for BK, and approximately 0.4 for ET-1. In cross-circulation preparations, pressor responses occurred in the donor rat following injection into the fourth cerebral ventricle of the recipient animal, showing that effective doses of ANG II, administered to the fourth cerebral, reach the systemic circulation. The same results were obtained for the microinjection of 4 nmol of LVP into the fourth cerebral ventricle of recipient animals. High-performance reverse-phase liquid chromatography analyses of arterial blood showed that approximately 1% of the [125I]ANG II injected into the fourth cerebral ventricle may be recovered from the systemic circulation a few seconds after the microinjection. The systemic administration of the ANG II receptor antagonist losartan blocked the response to ANG II injected into the fourth ventricle whereas antagonist administration in the same ventricle did not. Angiotensin injections into the lateral ventricle produced pressor responses that were reduced by antagonist administration to the same ventricle but not by systemic administration of the antagonist. The data suggest that the pressor effect resulting from ANG II or LVP injections into the fourth cerebral ventricle may be due to the action of this peptide in the systemic circulation. On the other hand, the pressor effect due to ANG II microinjection into the lateral ventricle apparently results from the direct stimulation of central periventricular structures.  相似文献   

7.

Background

The autonomic nervous system plays a central role in the functioning of systems critical for the homeostasis maintenance. However, its role in the cardiovascular adaptation to pregnancy-related demands is poorly understood. We explored the maternal cardiovascular systems throughout pregnancy to quantify pregnancy-related autonomic nervous system adaptations.

Methodology

Continuous monitoring of heart rate (R-R interval; derived from the 3-lead electrocardiography), blood pressure, and thoracic impedance was carried out in thirty-six women at six time-points throughout pregnancy. In order to quantify in addition to the longitudinal effects on baseline levels throughout gestation the immediate adaptive heart rate and blood pressure changes at each time point, a simple reflex test, deep breathing, was applied. Consequently, heart rate variability and blood pressure variability in the low (LF) and high (HF) frequency range, respiration and baroreceptor sensitivity were analyzed in resting conditions and after deep breathing. The adjustment of the rhythms of the R-R interval, blood pressure and respiration partitioned for the sympathetic and the parasympathetic branch of the autonomic nervous system were quantified by the phase synchronization index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators.

Results

Heart rate and LF/HF ratio increased throughout pregnancy and these effects were accompanied by a continuous loss of baroreceptor sensitivity. The increases in heart rate and LF/HF ratio levels were associated with an increasing decline in the ability to flexibly respond to additional demands (i.e., diminished adaptive responses to deep breathing). The phase synchronization index γ showed that the observed effects could be explained by a decreased coupling of respiration and the cardiovascular system (HF components of heart rate and blood pressure).

Conclusions/Significance

The findings suggest that during the course of pregnancy the individual systems become increasingly independent to meet the increasing demands placed on the maternal cardiovascular and respiratory system.  相似文献   

8.
There is increasing evidence that the use of cocaine can trigger lethal cardiac events, including ventricular fibrillation. The mechanism responsible for these lethal cardiac arrhythmias remains to be determined. Therefore, 13 mongrel dogs were instrumented so that heart rate, left ventricular pressure (LVP), and d(LVP)/dt could be measured. After a 3- to 4-wk recovery period, the left circumflex coronary artery was occluded for 2 min, beginning with the last minute of an exercise stress test and continuing for 1 min after the cessation of exercise. None of the dogs developed cardiac arrhythmias during the control exercise plus ischemia test. On a subsequent day, the test was repeated after the injection of cocaine HCl (1.0 mg/kg). Cocaine significantly (P less than 0.01) elevated heart rate, systolic LVP, and d(LVP)/dt, and it elicited cardiac arrhythmias in 12 of the 13 animals during the exercise plus test. In fact, 11 animals developed ventricular fibrillation. Verapamil, a calcium channel antagonist (250 micrograms/kg), attenuated the hemodynamic effects of cocaine and prevented the development of ventricular arrhythmias. These data suggest that cocaine can induce ventricular fibrillation during myocardial ischemia and that these lethal arrhythmias may be prevented by a calcium channel antagonist.  相似文献   

9.
Previous in vivo and in vitro experiments have demonstrated increased cardiac contractility and increased total myocardial blood flow (Qmyocardial) when rats were exposed to normoxic 5-bar (500 kPa) ambient pressure. In the present study, regional blood flow was measured using the microsphere method on nine anaesthetized cats at surface and normoxic 5-bar (500 kPa) ambient pressure. Left ventricular pressure (LVP) and cardiac contractility, measured as peak left ventricular +dP/dt and -dP/dt were measured in six of the cats. Arterial pressure, heart rate and cardiac output remained unchanged after compression, but total Qmyocardial increased by 29% (P less than 0.01) and cerebral blood flow increased by 66% (P less than 0.05). At the same time +dP/dt and -dP/dt was increased by 83% and 102%, respectively (P less than 0.01), while LVP was enhanced by 14% (P less than 0.05). Except for a moderate decrease in partial pressure of oxygen, acid base status in arterial blood remained unchanged. The results indicate that the effects of increased ambient pressure on the heart are general physiological phenomena, which are not only limited to the laboratory rat.  相似文献   

10.
Postprandial hemodynamic changes were studied in healthy subjects at rest and during exercise in the upright position with and without autonomic blockade of the heart. At rest cardiac output increased 61% mostly because of a stroke volume increase accomplished by left ventricular end-diastolic dilation. These changes seemed to be dependent on the autonomic nervous system, whereas the postprandial heart rate increase did not. During exercise cardiac output was 23% higher after food intake due to a rise in both stroke volume and heart rate. These changes were apparently under influence of the autonomic nervous system, whereas left ventricular dilation was not. The present findings indicate that most of the postprandial changes in the central circulation are under control of the autonomic nervous system.  相似文献   

11.
《Life sciences》1995,57(7):715-728
The effects of Nω-nitro-L-arginine methyl ester (L-NAME) i.v. and nitric oxide (NO) inhalation on integrated systemic responses to cocaine were studied in lightly anesthetized, paralyzed, and mechanically ventilated rats. Cocaine (4 mg/kg/min i.v.) produced seizures then isoelectric electrocephalographic (isoEEG) activity as well as an initial increase in systolic blood pressure and heart rate, then progressive cardiovascular system depression culminating in asystole. Pretreatment with L-NAME (2 mg/kg/min i.v.) for 30 min significantly reduced the incidence of seizure as compared to saline treated animals (saline 7/8; L-NAME 3/8). Doses of cocaine that produced arrhythmias, isoEEG and asystole were significantly lower in the L-NAME treated animals as compared to the saline group. L-NAME did not affect peak systolic blood pressure and heart rate responses to cocaine. NO inhalation (80 ppm) did not affect CNS and cardiovascular responses to cocaine in control animals but enhanced the effects of L-NAME on cocaine toxicity. The results show that pretreatment with L-NAME reduces the central nervous system stimulatory effect of cocaine (reduced seizure incidence) and enhances its depressant effect on both the central nervous system (lower does for isoEEG) and the cardiovascular system (lower dose for arrhythmias and asystole), but does not affect the cardiovascular stimulatory action of cocaine. NO inhalation does not protect against any of the systemic effects of cocaine in animals with normal or suppressed NO production.  相似文献   

12.
Objective measurements of physiological parameters controlled by the autonomic nervous system such as blood pressure, heart rate and respiration are easily obtained nowadays during anaesthesia by the use of monitors: oscillometers, pulseoximeters, electrocardiograms and capnographs are available for laboratory animals. However, the effect-site of hypnotic drugs that cause general anaesthesia is the central nervous system (the brain). In the present, the adjustment of hypnotic drugs in veterinary anaesthesia is performed according to subjective evaluation of clinical signs which are not direct reflexes of anaesthetic effects on the brain, making depth of anaesthesia (DoA) assessment a complicated task. The difficulties in assessing the real anaesthetic state of a laboratory animal may not only result in welfare-threatening situations, such as awareness and pain sensation during surgery, but also in a lack of standardization of experimental conditions, as it is not easy to keep all animals from an experiment in the same DoA without a measure of anaesthetic effect. A direct measure of this dose-effect relationship, although highly necessary, is still missing in the veterinary market. Meanwhile, research has been intense in this subject and methods based on the brain electrical activity (electroencephalogram) have been explored in laboratory animal species. The objective of this review is to explain the achievements made in this topic and clarify how far we are from an objective measure of DoA for animals.  相似文献   

13.
The present study records the physiological effects of 24-hour intracerebroventricular infusion of a variety of biologically active peptides in conscious sheep. A number of peptides including AVP and TRH produced increases in mean arterial pressure, heart rate and body temperature. There was an overall positive correlation between peptide-induced changes in body temperature and changes in either mean arterial pressure or heart rate. TRH and β-endorphin had marked effects on behaviour and several peptides reduced food and water intake. Several peptides increased urinary sodium excretion, however, few peptides changed plasma electrolyte concentrations. TRH produced small effects on plasma ACTH and plasma glucose concentrations. The peptides in this study produced physiological changes which were probably mediated by their actions on the central nervous system.  相似文献   

14.
M A Petty  W de Jong  D de Wied 《Life sciences》1982,30(21):1835-1840
The cardiovascular effects of beta-endorphin after administration directly into the nucleus tractus solitarii (NTS) of urethane anaesthetised rats were investigated. Unilateral injection resulted in a dose related fall in mean arterial pressure and heart rate. No change in respiratory frequency was prevented and the bradycardia reduced by pretreatment with locally applied naloxone (10 ng). This dose of the opiate antagonist had no effect on mean arterial pressure or heart rate when administered alone. Antiserum to beta-endorphin (1:50 dilution) caused a rise in pressure and a tendency towards tachycardia on injection into the NTS, while it completely blocked the depressor response and bradycardia induced by beta-endorphin. These results are consistent with the view that a beta-endorphin-like peptide has a depressor role in the central nervous system. The hypotension may result from an effect within the central connections of the baroreceptor reflex arc, probably at the level of the NTS.  相似文献   

15.
The effect of central nervous system imidazoline receptors activation on basal blood pressure level, heart rate and arterial baroreceptor reflex in steady state and aversive emotional tension was tested in experiments on alert WKY, SHR and white bastard rats. It was found that the brain imidazoline receptors activation led to arterial baroreceptor reflex rise (both in resting and in emotional tension) and caused an emotional stress pressor effects decrease. No data proving involvement of imidazoline receptors in functioning of the systems maintaining level of blood pressure, were found.  相似文献   

16.
目的:通过研究GX1-rmhTNFα对动物重要生命功能的影响,观察其主要药效学以外的药理作用,为临床研究和安全用药提供信息。方法:分别取大鼠、小鼠肌肉注射,测试GX1-rmhTNFα对动物中枢神经系统、心血管系统、呼吸系统的影响。结果:GX1-rmhTNFα三个剂量组对动物中枢神经系统,呼吸系统,心血管系统无明显影响,与生理盐水对照组比较P〉0.05。结论:在本实验中,GX1-rmhTNFα对小鼠的中枢神经系统无明显影响,对大鼠呼吸系统,心血管系统无显著性影响,提示其不良反应小。  相似文献   

17.
The effects of desmopressin acetate (DDAVP) were studied in normal males. Subjects were given 60μg of DDAVP, a placebo, or no treatment and were given several behavioral tests. DDAVP enhanced learning of all problems on a concept shift task but had no effect on visual memory, anxiety, blood pressure or heart rate. It was suggested that DDAVP may influence memory via its actions on attention.  相似文献   

18.
Clinical research was conducted into the possible interrelationships between prostaglandin (PG) F2alpha and the human sympathetic nervous system. The study also permitted comparison of the relative sensitivity of 2 indicators of sympatho-adrenal activity: 1) the determination of circulating catecholamines, epinephrine and norepinephrine; and 2) analysis of plasma dopamine-8-hydroxylase activity. Intravenous PGF2alpha infusion was administered to college students 12-18 weeks pregnant to produce abortion; the results were compared to results from nonpregnant controls. Circulating norepinephrine but not plasma epinephrine or dopamine-8-hydroxylase levels were increased in response to the PG. There was no correlation between plasma epinephrine and plasma norepinephrine levels. Plasma dopamine-8-hydroxylase activity was found not to be significantly changed by pregnancy, administration of the analgesic and antiemetic, or the PG infusion. In fact, central venous dopamine-8-hydroxylase activity did not differ significantly from that of arterial blood. The PG did not affect cardiac output or maximal expiratory flow rate. It is suggested that the nausea and diarrhea accompanying PGF2alpha infusion may put stress on the sympathetic nervous activity causing the observed increase in plasma norepinephrine concentration. Since no changes in blood pressure, heart rate, central venous pressure, or cardiac output were observed, it is unlikely that PGF2alpha causes even slight impairment of sympathetic nervous system activity.  相似文献   

19.
This experiment was conducted to clarify difference of arterial pressure regulatory mechanism between awake and anesthetized human subjects. In 18 subjects who were scheduled for surgical operations, passive tilting test was performed both in awake and anesthetized conditions. Arterial pressure and heart rate were measured during four types of tilting test, i.e., 1. supine-10 degrees head down tilt 2. 10 degrees head down tilt-supine 3. supine-10 degrees head up tilt 4. 10 degrees head up tilt-supine. Relative changes in arterial pressure and heart rate in response to these four tilting tests were compared. After postural changes, all anesthetized subjects showed significant arterial pressure changes followed by restoration of arterial pressure towards control level with opposite changes of heart rate. This initial arterial pressure changes were mainly induced by shift of blood due to gravity and subsequent arterial pressure and heart rate changes were mainly by baro-receptor reflex. On the other hand, awake subjects showed transient increase of heart rate immediately after tilting followed by arterial pressure rise 2 to 3 seconds later in all four tilting tests. However, arterial pressure did not change so remarkably as in anesthetized condition and remained almost constant during tilting test. In awake subjects, their arterial pressure was regulated rapidly and reflex control of arterial pressure was masked. This rapid regulation of arterial pressure may be induced directly by higher central nervous system.  相似文献   

20.
Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号