首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathways for HCO3 transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl---HCO3 exchange was assessed directly by 36Cl tracer flux measurements and indirectly by determinants of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3 concentration gradient (pHo 6/pHi 7.5) stimulated Cl uptake compared to Cl uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl for HCO3 was suggested by the HCO3 gradient-induced concentrative accumulation of intravesicular Cl. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3 gradient-driven Cl uptake further suggesting chemical as opposed to electrical Cl−HCO3 exchange coupling. Although basolateral membrane vesicle Cl uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl conductive pathway served to distinguish this mode of Cl translocation from HCO3 gradient-driven Cl uptake. No evidence for cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3 dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl concentration gradient. The basolateral membrane vesicle origin of the observed Cl−HCO3 exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl on HCO3 gradient-driven Na+ uptake suggesting a basolateral membrane Na+−HCO3 for Cl exchange mechanism, no effect of Na+ on Cl−HCO3 exchange was observed in the present study.  相似文献   

2.
The effects of the serotonin analogue, tryptamine, on the active transepithelial transport of Na+ and Cl in the in vitro bullfrog cornea were studied. Tryptamine, 1 mM, inhibited both the short-circuit current (Isc) and potential difference (PD) of corneas transporting either Na+ alone or both Na+ and Cl. The electrical resistance, R, increased in all cases. Both unidirectional Na+ and Cl fluxes were decreased by tryptamine and these changes accounted for the inhibitory effects on the Isc. The effects of tryptamine were considered along with with those of 2 mM theophylline and 0.1 mM ouabain. Tryptamine inhibited the Isc and both undirectional Cl fluxes which were previously stimulated by theophylline. Theophyline addition, after tryptamine preincubation, increased the Cl undirectional fluxes but did not restore the inhibited Isc. The inhibitory effects of tryptamine on active Na+ and Cl transport were different from those of ouabain. While both drugs inhibited the forward Na+ and Cl fluxes, their backfluxes decreased with tryptamine and increased with ouabain. The addition to the bathing solution of tryptamine after ouabain preincubation reduced the ouabain-increased backward Cl flux and further increased the electrical resistance. These results are analyzed in terms of an electrical model from which it appears that tryptamine's mechanism of action was to decrease cellular permeability to the transepithelial movement of Na+ and Cl.  相似文献   

3.
The effects of furosemide and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS) on steady-state Cl flux were studied in Ehrlich mouse ascites cells. At 10 mM, furosemide inhibited isotopically-determined Cl flux by 86% without changing cell Cl content, indicating that influx and efflux were depressed by the same amount. These results suggest that at least 86% of the steady-state Cl flux may occur as a one for one exchange. Half of the inhibitory effect was not reversed by vigorous washing with albumin-Ringer. A smaller portion of steady-state Cl flux was inhibited by SITS. The maximum effect of SITS was reached near 0.6 mM; at this concentration Cl flux was reduced by 37% without an alteration in cell Cl content. Possible competition of environment Cl and SITS was investigated by replacing environment Cl with acetate or NO3. These anions reduced the efficacy of SITS because they depressed cell Cl turnover themselves, apparently acting on the same exchange process.  相似文献   

4.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

5.
The effects of external anions (SCN, NO3, I, Br, F, glutamate, and aspartate) on gating of Ca2+-dependent Cl channels from rat parotid acinar cells were studied using the whole-cell configuration of the patch-clamp technique. Shifts in the reversal potential of the current induced by replacement of external Cl with foreign anions, gave the following selectivity sequence based on permeability ratios (Px/PCl): SCN>I>NO3>Br>Cl>F>aspartate>glutamate. Using a continuum electrostatic model we calculated that this lyotropic sequence resulted from the interaction between anions and a polarizable tunnel with an effective dielectric constant of ∼23. Our data revealed that anions with Px/PCl > 1 accelerated activation kinetics in a voltage-independent manner and slowed deactivation kinetics. Moreover, permeant anions enhanced whole-cell conductance (g, an index of the apparent open probability) in a voltage-dependent manner, and shifted leftward the membrane potential-g curves. All of these effects were produced by the anions with an effectiveness that followed the selectivity sequence. To explain the effects of permeant anions on activation kinetics and gCl we propose that there are 2 different anion-binding sites in the channel. One site is located outside the electrical field and controls channel activation kinetics, while a second site is located within the pore and controls whole-cell conductance. Thus, interactions of permeant anions with these two sites hinder the closing mechanism and stabilize the channel in the open state.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

6.
Split lamellae of posterior gills of Eriocheir sinensis adapted to fresh water, brackish waters (9 or 18‰) or seawater (36‰) were mounted in Ussing chambers, and transepithelial short-circuit currents and conductances were measured with salines, containing approximately in vivo-like NaCl concentrations. Active sodium and chloride absorption (INa and ICl), the transcellular conductances and the leak conductance were identified with external amiloride and/or DIDS. Split gill lamellae of crabs adapted to fresh water displayed similar magnitudes of INa and ICl with 10 mmol l−1 NaCl in the external medium (internally haemolymph-like NaCl saline). Augmenting external NaCl (50 mmol l−1) resulted in an increase of ICl, whereas INa decreased. Split gill lamellae of crabs adapted to brackish waters (external NaCl of 125 and 225 mmol l−1, respectively) showed lower currents than preparations of freshwater crabs (50 mmol l−1 external NaCl). With split gill lamellae of seawater crabs no currents were detected (450 mmol l−1 NaCl on both sides). The transcellular conductances showed similar changes as the currents. The leak conductance of split gill lamellae of crabs adapted to fresh or brackish waters was low (0.3–0.8 mS cm−2), whereas it was much higher (7 mS cm−2) with preparations of seawater crabs.  相似文献   

7.
The Cl conductance in isolated skin of frogs (Rana catesbeiana) acclimated to 30 mM solutions of NaCl, Na2SO4, MgCl2 and distilled water (DW) was studied. Transepithelial potential difference (PDtrans), short-circuit current (ISC) and total conductance (Gt) were measured under conditions such that there was Cl flux in the presence and absence of Na+ transport. The Cl content of the mucosal solution was acutely replaced with SO42− or gluconate to evaluate the effect of removal of Cl conductance on electrophysiological parameters. Mitochondria-rich cell density (DMRC) was also measured. Skins from frogs acclimated to NaCl and Na2SO4 showed the lowest and the highest DMRC, respectively, but no difference could be found between the skins from frogs acclimated to DW and MgCl2 indicating that DMRC is not unconditionally dependent on environmental Cl in this species. Frogs acclimated to NaCl showed marked differences when compared to the other groups: the highest Gt, probably represented by a higher paracellular conductance; the lowest transepithelial electrical potential difference which remained invariant after replacement of mucosal Cl with SO42− or replacement of mucosal Cl with gluconate and an inwardly oriented positive current in the absence of bilateral Na+.  相似文献   

8.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

9.
A decrease in nutrient Cl results in an increased negativity of the nutrient relative to the secretory side. The possibility emerged that Cl transport could be attributed to a neutral mechanism involving Cl in the nutrient membrane coupled to a simple Cl conductance pathway in the secretory membrane. The decrease in PD (potential difference) with a decrease in nutrient Cl could arise from a decrease in cellular Cl so that the ratio of Cl in cell to Cl in secretory solution was decreased. Experiments were designed to determine whether there was a need to assume a simple Cl conductance pathway. A 10-fold decrease in Cl gave in HCO3-containing nutrient solutions a PD decrease of 20 mV, in HCO3-free nutrient solutions, a PD decrease of 13.5 mV, and in HCO3-free and Na+-free solutions, a PD decrease of 6.7 mV. The decrease of 6.7 mV could not be attributed to a neutral ClHCO3 exchanger or a NaCl symport. Also there was no evidence for a KCl symport from changes in Cl in presence and absence of K+. It followed that the decrease of 6.7 mV provided evidence for a simple Cl conductance pathway in the nutrient membrane.  相似文献   

10.
(1) Thylakoids isolated from leaves of two salt-tolerant higher plant species were found to require high (greater than 250 mM) concentrations of Cl for maximal rates of photosynthetic O2 evolution and maximum variable chlorophyll a fluorescence yield. These activities were also tolerant to extremely high (2–3 M) salt concentrations. Their pH dependence was markedly different in the absence and presence of sufficient salt levels. (2) When Cl was provided as CaCl2, as opposed to MgCl2, KCl or NaCl, higher rates of O2 evolution were obtained, suggesting that Ca2+ has an important role in Photosystem II reactions. (3) The site of Cl action was located on the electron donor side of Photosystem II. (4) O2 evolution in the presence of optimal Cl concentrations showed a pH dependence closely matched by that of 35Cl-NMR line broadening, which is indicative of Cl binding. This pH-dependent 35Cl-NMR line-width broadening was not altered significantly by treatment of the thylakoids with EDTA; it was, however, abolished by heat treatment. (5) Only anions with similar ionic radii (Br, NO3) were effective in replacing Cl. Small anions such as F and OH were inhibitory; larger ions had no effect. The inhibition by F is due, at least in part, to displacement of Cl. The selectivity is attributed to a combination of steric and ionic field effects. (6) It is proposed that Cl facilitates Photosystem II electron transport by reversible ionic binding to the O2-evolving complex itself or to the thylakoid membrane in close proximity to it.  相似文献   

11.
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl<Br<I. This behavior is also observed using the ABEC resins where halo complexes of mercury will adsorb to the resin from (NH4)2SO4 solutions with retention following the same order. The onset of mercury extraction or adsorption is different for the three extractants, occurring at the lowest extractant concentration for I, followed by Br, and then Cl. Fluoride does not extract mercury. Extraction or adsorption of mercury is improved at the lowest halide concentrations in the presence of sulfuric acid. The addition of sulfuric acid to (NH4)2SO4 solution results in ABEC retention of mercury even in the absence of halide extractant.  相似文献   

12.
Various anions and cations are found to induce changes in the layered structure of phosphatidylcholine-water systems as indicated by Raman Spectroscopy. From the ratio of Raman intensities, , it is inferred that dispositive ions decrease the proportion of gauche character in the hydrocarbon chains, with the relative influence being: Ba2+ < Mg2+ < Ca2+ ≈ Cd2+. Unipositive ions (Li+, K+ and Na+) produce no observed changes in the Raman spectrum of the lecithin dispersion. The proportion of gauche character of the hydrocarbon chains is found to be nearly independent of the anion for: Br, Cl, acetate, I, ClO4, CNS and SO42−. Dispersions prepared with a solution of KI + I2 produced Raman spectra in which the 1089 cm−1 peak, which is characteristic of random lipid chains, was greatly intensified, presumably because of the presence of I3 which is known to penetrate the lipid lamellae. The observed trends are discussed.  相似文献   

13.
The effect of conjugated dihydroxy and trihydroxy bile salts on electrolyte transport across isolated rabbit jejunal mucosa was studied. Both taurochenodeoxycholic acid and taurocholic acid increased the short-circuit current (Isc) in bicarbonate-Ringer solution but not in a bicarbonate-free, chloride-free solution. Taurochenodeoxycholic acid was significantly more effective than taurocholic acid in increasing Isc. The presence of theophylline prevented the taurochenodeoxycholic acid-and taurocholic acid-induced increase in Isc. Transmural ion fluxes across jejunal mucosa demonstrated that 2 mM taurochenodeoxycholic acid decreased net Na+ absorption, increased net Cl secretion and increased the residual flux (which probably represents HCO3 secretion). These studies support the hypothesis that cyclic AMP may be a mediator of intestinal electrolyte secretion.  相似文献   

14.
The biogeochemistry of chlorine at Hubbard Brook,New Hampshire,USA   总被引:3,自引:3,他引:0  
Chlorine is a minor constituent of most rocks and a minor (although essential) element in plants, but it cycles rapidly through the hydrosphere and atmosphere. In forest ecosystem studies, chloride ion (Cl) is often thought to be conservative in the sense that the sources and sinks within the ecosystem are assumed negligible compared to inputs and outputs. As such, Cl is often used as a conservative tracer to assess sources and transformations of other ions. In this paper we summarize research on chloride over the course of 36 years (1964–2000) at the Hubbard Brook Experimental Forest (HBEF) in central New Hampshire, USA. Evidence presented here suggests that in the 1960s and 1970s the dominant source of atmospheric Cl deposition was from pollutant sources, probably coal burning. In the 1970s the Cl inputs in bulk deposition declined, and the lower Cl deposition in the last two decades is dominated by marine sources. Between 1964 and 2000 there was no significant trend in Cl export in stream flow, thus the net hydrologic flux (NHF = bulk deposition inputs − streamflow outputs) has changed over this period. Early in the record the NHF was on average positive, indicating net retention of Cl within the system, but since about 1980 the NHF has been consistently negative, indicating an unmeasured input or source within the ecosystem. Dry deposition can account for at least part of that unmeasured source, and it appears that release of Cl from mineralization of soil organic matter (SOM) may also play an important role. We believe that accumulation of Cl in vegetation during the 1960s and 1970s offset the unmeasured source and resulted in net ecosystem retention. Accumulation of vegetative biomass has ceased since about 1982, leading to the apparent net export (negative NHF) since that time. Although we have no direct measurements of Cl accumulation in vegetation, our estimates suggest that an aggrading forest could sequester about 32 mol Cl ha−1 year−1, or about a third of the annual average bulk deposition flux to this ecosystem. Experimental additions of Cl to the forest floor cause increases in Cl concentration in foliage, throughfall, and soil solution. Manipulations of vegetation also affect the Cl cycle. Harvesting or devegetation of watersheds causes an increase in the Cl concentration and flux in stream water for several years after the disturbance. This period of release is followed by a period of reaccumulation of Cl that may last more than 15 years. In this respect, the behavior of Cl after disturbance parallels that of NO3, for which export increases after disturbance due to reduced plant nitrogen uptake and mineralization of nitrogen from detritus, rather than SO42−, for which export decreases after disturbance due to pH-dependent adsorption onto mineral soils. The interannual pattern of Cl export from the system primarily reflects the atmospheric inputs, but the net retention and cycling of Cl within the system appears to be largely under biological, rather than geochemical, control.  相似文献   

15.
Ion and acid–base balance were examined in the freshwater-adapted mummichog (Fundulus heteroclitus) using a series of treatments designed to perturb the coupling mechanisms. Unidirectional Cl uptake (JClin) was extremely low whereas JNain was substantial (three- to sixfold higher); comparable differences occurred in unidirectional efflux rates (JClout, JNaout). JClin was refractory to all treatments, suggesting that Cl/base exchange was unimportant or absent. Indeed, no base excretion or modulation of ion fluxes occurred for acid–base balance for up to 8 h after NaHCO3 loading (injections of 1000 or 3000 nequiv.·g−1). Acute environmental low pH (4.5) and amiloride (10−4 M) treatments caused concurrent inhibition of JNain and net H+ excretion (JH+net), indicating the presence of Na+/H+ exchange. JNain was elevated and JH+net restored during recovery from both treatments, but this exchange did not appear to be dynamically adjusted for acid–base homeostasis. High external ammonia exposure (1 mmol·l−1) initially blocked ammonia excretion (JAmmnet) but had no effect on JNain, whereas high pH (9.4) reduced both JAmmnet and JNain. Inhibition of JNain by the low pH and amiloride treatments had no effect on JAmmnet. These results indicate that ammonia excretion is entirely diffusive and independent of both Na+uptake and the protons that are transported via the Na+/H+ coupling. In addition, ureagenesis served as a compensatory mechanism during high external ammonia exposure, as a marked elevation in urea excretion partially replaced the inhibited JAmmnet. In all treatments, changes in the Na+–Cl net flux differential were consistent with changes in JH+net measured by traditional water titration techniques, indicating that the former can be used as an estimate of the acid–base status of the fish. Overall, the results demonstrate that the freshwater-adapted F. heteroclitus does not conform to the ion/acid–base relationships described in the standard model based on commonly studied species such as trout, goldfish, and catfish.  相似文献   

16.
The application of fluid pressure (FP) in ventricular myocytes using pressurized fluid flow inhibits L-type Ca2+ current (ICa), with approximately 80% of this effect coming through the enhancement of Ca2+ releases from the sarcoplasmic reticulum. In the present study, we explored the remaining mechanisms for the inhibition of ICa by FP. Since FP significantly increases H+ concentration and H+ is known to inhibit ICa, we examined whether pH regulation plays a role in the inhibitory effect by FP on ICa. A flow of pressurized (∼16.3 dyne/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes for which the ICa was monitored using whole-cell patch-clamp under HEPES-buffered conditions. Extracellular application of the alkalizing agent, NH4Cl (20 mM), enhanced ICa by ∼34% in the control conditions while increasing ICa significantly less (by ∼21%) in FP-pretreated myocytes, suggesting an inhibition of the effect of NH4Cl on ICa possibly by FP-induced acidosis. Application of DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid, 500 μM), which blocks exchange but not Cl–OH exchange, did not alter the inhibitory effect of FP on ICa. Replacement of external Cl with aspartate attenuated the inhibitory effect of FP on ICa. In highly Ca2+-buffered cells, where Ca2+-dependent inhibition of ICa was minimized, the external Cl removal eliminated the inhibitory effect of FP on ICa. These results suggest that the decrease of ICa in the presence of FP is at least partly caused by intracellular acidosis via activation of Cl–OH exchange in rat ventricular myocytes.  相似文献   

17.
Structural roles of functional Ca2+ and Cl ions in photosynthetic oxygen-evolving complexes (OEC) were studied using low- (640–350 cm−1) and mid- (1800–1200 cm−1) frequency S2/S1 Fourier transform infrared (FTIR) difference spectroscopy. Studies using highly active Photosystem (PS) II core particles from spinach enabled the detection of subtle spectral changes. Ca2+-depleted and Ca2+-reconstituted particles produced very similar mid- and low-frequency spectra. The mid-frequency spectrum was not affected by reconstitution with 44Ca isotope. In contrast, Sr2+-substituted particles showed unique spectral changes in the low-frequency Mn–O–Mn mode at 606 cm−1 as well as in the mid-frequency carboxylate stretching modes. The mid-frequency spectrum of Cl-depleted OEC exhibited marked changes in the carboxylate stretching modes and the suppression of protein modes compared with that of Cl-reconstituted OEC. However, Cl-depletion did not exert significant effects on the low-frequency spectrum.  相似文献   

18.
Effects of salinity and nitrate nitrogen (NO3-N) on ion accumulation and chlorophyll fluorescence were monitored for two populations of Suaeda salsa grown from seeds in a greenhouse experiment. One population inhabits the intertidal zone and the other occurs on inland saline soils. Ion contents in soils and in leaves of the two populations were also investigated in field. In the greenhouse, seedlings were exposed to a NaCl concentration of 0.6 and 35.1 ppt, with 0.1 or 5 mM NO3-N treatments for 20 days. The contents of Na+ and Cl were higher, but NO3 was lower in soils of the intertidal zone than at the inland site. In the field, ion concentrations and the estimated contribution of these ions to osmotic potential in leaves showed no difference between the two populations, except that the estimated contribution of Na+ to osmotic potential in leaves of the intertidal population was lower than that in the inland population. In the greenhouse, in contrast, the concentration of Cl was lower, but NO3 concentration and the estimated contribution of NO3 to osmotic potential were higher, in the leaves of plants from the intertidal zone. Salinity had no effect on the maximal efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII). The results indicated that S. salsa from the intertidal zone was better able to regulate Cl to a lower level, and accumulate NO3 even with low soil NO3 concentrations. Tolerance of the PSII machinery to high salinity stress may be an important characteristic for the studied species supporting growth in highly saline environments.  相似文献   

19.
Summary Proximal, stripped segments of small intestine from the urodeleAmphiuma were short-circuited in media containing Na+, Cl and HCO 3 . Under these conditions there was a large net absorption of Cl, a small net absorption of Na+ and a residual flux (J Net R ) consistent with HCO 3 secretion. Net Cl absorption correlated with the short-circuit current (I sc); net Na+ absorption correlated negatively withJ Net R . Acetazolamide eliminated theI sc, lowered Cl absorption by 50%, and reduced net Na+ absorption without alteringJ Net R . Benzolamide inhibited theI sc without alteringJ Net R . Benzolamide inhibited theI sc more rapidly when applied on the mucosal surface. Replacement of Na+ or HCO 3 (and CO2) in the media eliminated theI sc, net Cl absorption and the residual flux. Likewise, inclusion of the stilbene SITS in the serosal media eliminated theI sc, net Cl absorption and the residual flux. The cytoplasmic activity of Cl (a ci a ) was determined with single and double-barreled microelectrodes. Thea ci a of villus absorptive cells in normal media was 21.0mm and in excess of that expected on the basis of electrochemical equilibrium of Cl at the mucosal membrane. Active Cl accumulation was also observed in the presence of acetazolamide but was eliminated upon replacement of media Na+ with choline. The mucosal membrane potential was depolarized upon replacement of media Na+. It is concluded that Cl is actively absorbed into intestinal cells ofAmphiuma by an electrogenic process located in the mucosal membrane. Depending on the level of intracellular HCO 3 , accumulated Cl may diffuse passively back into the mucosal media or undergo exchange with bath HCO 3 at the serosal membrane.  相似文献   

20.
1. 1. The present experiments measure net fluxes of fluid, Cl and HCO3 across de-epithelialised rabbit corneas clamped between half chambers and bathed in Ringer solutions.
2. 2. Net fluxes of HCO3 and fluid occurred together across the cornea from stroma to aqueous when HCO3 and CO2 were present in the bathing solution.
3. 3. No net trans-corneal Cl flux was found
4. 4. The initiation of fluid flow in the presence of HCO3 and CO2 cannot be accounted for by bulk-phase osmotic flow across the cornea.
Keywords: Osmotic coupling; Bicarbonate flux; Fluid flux; Cl flux; (Cornea)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号