首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The changes in birefringence in the rigor to relax transition of single Triton-extracted rabbit psoas muscle fibers have been investigated. The total birefringence of rigor muscle fibers was dependent on sarcomere length and ranged from (1.46 ± 0.08) × 10−3 to (1.60 ± 0.06) ± 10−3 at sarcomere lengths from 2.70 μm to 3.40 μm. An increase in total birefringence was measured dependent on sarcomere length when 55 single fibers were relaxed from the rigor state with Mg-ATP. Pyrophosphate relaxation produced a smaller increase in retardation when compared to Mg-ATP. The expected change in intrinsic birefringence during the rigor to relax transition was calculated assuming a hinge function of the subfragment 2 moiety of myosin. The changes in birefringence during isometric contraction and relaxation have been discussed in relation to possible structural changes.  相似文献   

2.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC.  相似文献   

3.
Measurement of the state of optical polarization of light diffracted from single, skinned and intact fibers of anterior tibialis muscle from Rana pipiens revealed a dependence upon rigor, activation, and sarcomere length (SL) change. Changes in total birefringence, delta nT, and differential field ratio value, rT, were determined. In a relaxed, skinned fiber the total birefringence value, delta nT, decreases as sarcomere length is increased from 2.1 microns to approximately 2.8-3.0 microns. From there it increases significantly to a value of approximately 1.8 x 10(-3) at a sarcomere length of 3.6 microns. The differential field ratio, rT, also shows a biphasic response to increasing sarcomere length, first exhibiting a rapid decrease over shorter SL and leveling out after the SL is beyond 3.0 microns. In comparison, relaxed intact fibers change substantially less upon sarcomere length change, showing little change in birefringence and a small bi-phasic change in rT. Skinned fibers were activated using a solution that has the same ionic strength as the relaxing solution and allows repeatable, and sustained activation. A decrease in both delta nT and rT was observed upon fiber activation. The decrease in delta nT and rT was slightly larger at shorter sarcomere lengths than at longer lengths. Relaxed fibers placed in rigor showed changes in delta nT and rT similar to those observed in activated fibers. These results are consistent with the hypothesis that, after activation, a significant portion of the thick filament cross-bridges rotate towards the actin filament resulting in redistribution of the interfilament mass content. They are also consistent with an average orientation of crossbridges in the overlap region different from that in the nonoverlap region.  相似文献   

4.
Radial stiffness in various conditions of mechanically skinned fibers of semitendinosus muscle of Rana catesbeiana was determined by compressing the fiber with polyvinylpyrrolidone (PVP K-30, Mr = 40,000) in incubating solution. The change in width (D) of fibers with increasing and decreasing PVP concentrations was highly reproducible at a range 0-6% PVP. Radial stiffness of relaxed fibers was almost independent of the sarcomere length. On the other hand, radial stiffness of rigor fibers showed a linear relation against the sarcomere length. These results indicate that cross-bridge attachment would be a major factor in the increase of the radial stiffness. Radial stiffness of relaxed and rigor fibers was (2.14 +/- 0.52) X 10(4) N/m2 (mean +/- SD) and (8.76 +/- 2.04) X 10(4) N/m2, respectively, at the relative fiber width (D/D0) of 0.92, where D0 denotes the fiber width in the rigor solution at 0% PVP. Radial stiffness of a fiber in a rigor solution containing pyrophosphate (PPi) was between those of relaxed and rigor fibers, i.e., (4.76 +/- 0.86) X 10(4) N/m2 at D/Do of 0.92. In PPi and rigor solutions, radial stiffness reversibly increased to around 150 and 130%, respectively, in the presence of 10(-6) M Ca2+. To explain these results, especially the Ca2+-induced change in the radial stiffness, some factor in addition to the number of attached cross-bridges has to be taken into account. The variation of radial stiffness under various conditions will be discussed in relation to the possible manner of cross-bridge attachment.  相似文献   

5.
Instrumentation has been developed to detect rapidly the polarization of tryptophan fluorescence from single muscle fibers in rigor, relaxation, and contraction. The polarization parameter (P) obtained by exiciting the muscle tryptophans with light polarized perpendicular to the long axis of the muscle fiber had a magnitude P (relaxation) > P (contraction) > P (rigor) for the three types of muscle fibers examined (glycerinated rabbit psoas, glycerinated dorsal longitudinal flight muscle of Lethocerus americanus, and live semitendinosus of Rana pipiens). P from single psoas fibers in rigor was found to increase as the sarcomere length increased but in relaxed fibers P was independent of sarcomere length. After rigor, pyrophosphate produced little or no change in P, but following an adenosine triphosphate (ATP)-containing solution, pyrophosphate produced a value of P that fell between the contraction and relaxation values. Sinusoidal or square wave oscillations of the muscle of amplitude 0.5–2.0% of the sarcomere length and frequency 1, 2, or 5 Hz were applied in rigor when the myosin cross-bridges are considered to be firmly attached to the thin filaments. No significant changes in P were observed in either rigor or relaxation. The preceding results together with our present knowledge of tryptophan distribution in the contractile proteins has led us to the conclusion that the parameter P is a probe of the contractile state of myosin which is probably sensitive to the orientation of the myosin S1 subfragment.  相似文献   

6.
The regulatory light chain (RLC) from chicken gizzard myosin was covalently modified on cysteine 108 with either the 5- or 6-isomer of iodoacetamidotetramethylrhodamine (IATR). Labeled RLCs were purified by fast protein liquid chromatography and characterized by reverse-phase high-performance liquid chromatography (HPLC), tryptic digestion, and electrospray mass spectrometry. Labeled RLCs were exchanged into the native myosin heads of single skinned fibers from rabbit psoas muscle, and the ATR dipole orientations were determined by fluorescence polarization. The 5- and 6-ATR dipoles had distinct orientations, and model orientational distributions suggest that they are more than 20 degrees apart in rigor. In the rigor-to-relaxed transition (sarcomere length 2.4 microm, 10 degrees C), the 5-ATR dipole became more perpendicular to the fiber axis, but the 6-ATR dipole became more parallel. This orientation change was absent at sarcomere length 4.0 microm, where overlap between myosin and actin filaments is abolished. When the temperature of relaxed fibers was raised to 30 degrees C, the 6-ATR dipoles became more parallel to the fiber axis and less ordered; when ionic strength was lowered from 160 mM to 20 mM (5 degrees C), the 6-ATR dipoles became more perpendicular to the fiber axis and more ordered. In active contraction (10 degrees C), the orientational distribution of the probe dipoles was similar but not identical to that in relaxation, and was not a linear combination of the orientational distributions in relaxation and rigor.  相似文献   

7.
A new method of automatized quantitative interferometry of skeletal muscle fibers was developed for the investigation of birefringence. A device based on the Linnic microscope was constructed to obtain phase images, which are two-dimensional pictures of birefringence. For the first time, two-and-three-dimensional maps of both total birefringence and birefringence for individual sarcomeres in the central part of muscle fiber were visualized using large databases. It was shown that total birefringence of fibers at rest length in the rigor state was lower as compared with the relaxed. Birefringence values from individual sarcomere interferograms revealed also that normalized A-disk birefringence was lower in the rigor state. The results obtained could be explained by a decrease of thick filaments anisotropy, due to the moving away of myosin heads from the rod during transition into the rigor state.  相似文献   

8.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

9.
Radial forces within muscle fibers in rigor   总被引:2,自引:1,他引:1       下载免费PDF全文
Considering the widely accepted cross-bridge model of muscle contraction (Huxley. 1969. Science [Wash. D. C.]. 164:1356-1366), one would expect that attachment of angled cross-bridges would give rise to radial as well as longitudinal forces in the muscle fiber. These forces would tend, in most instances, to draw the myofilaments together and to cause the fiber to decrease in width. Using optical techniques, we have observed significant changes in the width of mechanically skinned frog muscle fibers when the fibers are put into rigor by deleting ATP from the bathing medium. Using a high molecular weight polymer polyvinylpyrrolidone (PVP-40; number average mol. wt. (Mn) = 40,000) in the bathing solution, we were able to estimate the magnitude of the radial forces by shrinking the relaxed fiber to the width observed with rigor induction. With rigor, fiber widths decreased up to approximately 10%, with shrinking being greater at shorter sarcomere spacing and at lower PVP concentrations. At higher PVP concentrations, some fibers actually swelled slightly. Radial pressures seen with rigor in 2 and 4% PVP ranged up to 8.9 x 10(3) N/m2. Upon rigor induction, fibers exerted a longitudinal force of approximately 1 x 10(5) N/m2 that was inhibited by high PVP concentrations (greater than or equal to 13%). In very high PVP concentrations (greater than or equal to 20%), fibers exerted an anomalous force, independent of ATP, which ranged up to 6 x 10(4) N/m2 at 60% PVP. Assuming that all the radial force is the result of cross- bridge attachment, we calculated that rigor cross-bridges exert a radial force of 0.2 x 1.2 x 10(-9) N per thick filament in sarcomeres near rest length. This force is of roughly the same order of magnitude as the longitudinal force per thick filament in rigor contraction or in maximal (calcium-activated) contraction of skinned fibers in ATP- containing solutions. Inasmuch as widths of fibers stretched well beyond overlap of thick and thin filaments decreased with rigor, other radially directed forces may be operating in parallel with cross-bridge forces.  相似文献   

10.
Paratropomyosin is a myofibrillar protein believed to weaken rigor linkages formed between actin and myosin. Using glycerinated fibers of rabbit psoas muscles, we studied the effect of paratropomyosin on the weakening of rigor linkages, which was followed in terms of the increase in sarcomere length of rigor-shortened muscles. The rigor tension developed was reduced to about 65% of the initial value within 10 min after the addition of purified paratropomyosin, whereas it remained constant for at least 3.5 h in control fibers. Paratropomyosin showed a stronger effect on the increase in sarcomere length of passively stretched fibers, which developed weaker rigor-tensions. The purpose of our research was to establish a rigor solution which would best permit the observation of the workings of paratropomyosin. The most successful rigor solution contained 0.2-0.25 M KCl, pH 5.5, at 5-10 degrees C. Under these conditions, the sarcomere length was easily increased from 2.4 to 3.6 micron, if rigor-contracted fibers were passively stretched after the addition of purified paratropomyosin. Because the experimental conditions coincide well with those of postmortem muscles, it is very probable that paratropomyosin plays an important role in restoration of the sarcomere length of rigor-shortened muscles, resulting in tenderization of meat during postrigor ageing.  相似文献   

11.
When a skinned fibre prepared from frog skeletal muscle goes from the relaxed to the rigor state at a sarcomere length of about 2.2 μm, the 1, 0 transverse spacing of the filament lattice, measured by X-ray diffraction, decreases by about 11%. In measurements at various sarcomere lengths, the decrease in the spacing was approximately proportional to the degree of overlap between the thick and thin filaments. This suggests that the shrinkage of the lattice is caused by a lateral force produced by cross-bridges. In order to estimate the magnitude of the lateral force, the decrease of spacing between relaxed and rigor states was compared with the shrinkage caused osmotically by adding a high molecular weight polymer, polyvinylpyrrolidone, to the bathing solution. The results indicate that the lateral force produced per unit length of thick filament in the overlap zone is of the same order of magnitude as the axially directed force produced during maximum isometric contraction (10?10 to 10?9 N/μm).Experiments in the presence of a high concentration of polyvinylpyrrolidone (100 g/l) show that when the lattice spacing is decreased osmotically beyond a certain value, the lateral force produced when the fibre goes into rigor changes its direction, causing the lattice to swell. This result can be explained by assuming that there is an optimum interfilament spacing at which the cross-bridges produce no lateral force. At other spacings, the lateral force tends to displace the filament lattice toward that optimum value.  相似文献   

12.
The mechanical compliance (reciprocal of stiffness) of thin filaments was estimated from the relative compliance of single, skinned muscle fibers in rigor at sarcomere lengths between 1.8 and 2.4 micron. The compliance of the fibers was calculated as the ratio of sarcomere length change to tension change during imposition of repetitive cycles of small stretches and releases. Fiber compliance decreased as the sarcomere length was decreased below 2.4 micron. The compliance of the thin filaments could be estimated from this decrement because in this range of lengths overlap between the thick and thin filaments is complete and all of the myosin heads bind to the thin filament in rigor. Thus, the compliance of the overlap region of the sarcomere is constant as length is changed and the decrease in fiber compliance is due to decrease of the nonoverlap length of the thin filaments (the I band). The compliance value obtained for the thin filaments implies that at 2.4-microns sarcomere length, the thin filaments contribute approximately 55% of the total sarcomere compliance. Considering that the sarcomeres are approximately 1.25-fold more compliant in active isometric contractions than in rigor, the thin filaments contribute approximately 44% to sarcomere compliance during isometric contraction.  相似文献   

13.
Two attached non-rigor crossbridge forms in insect flight muscle   总被引:1,自引:0,他引:1  
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.  相似文献   

14.
Cytoplasm has been isolated from single amoeba (Chaos carolinensis) in physiological solutions similar to rigor, contraction, and relaxation solutions designed to control the contractile state of vertebrate striated muscle. Contractions of the isolated cytoplasm are elicited by free calcium ion concentrations above ca. 7.0 x 10-7 M. Amoeba cytoplasmic contractility has been cycled repeatedly through stabilized (rigor), contracted, and relaxed states by manipulating the exogenous free calcium and ATP concentrations. The transition from stabilized state to relaxed state was characterized by a loss of viscoelasticity which was monitored as changes in the capacity of the cytoplasm to exhibit strain birefringence when stretched. When the stabilized cytoplasm was stretched, birefringent fibrils were observed. Thin sections of those fibrils showed thick (150–250 Å) and thin (70 Å) filaments aligned parallel to the long axis of fibrils visible with the light microscope. Negatively stained cytoplasm treated with relaxation solution showed dissociated thick and thin filaments morphologically identical with myosin aggregates and purified actin, respectively, from vertebrate striated muscle. In the presence of threshold buffered free calcium, ATP, and magnesium ions, controlled localized contractions caused membrane-less pseudopodia to extend into the solution from the cytoplasmic mass. These experiments shed new light on the contractile basis of cytoplasmic streaming and pseudopod extension, the chemical control of contractility in the amoeba cytoplasm, the site of application of the motive force for amoeboid movement, and the nature of the rheological transformations associated with the circulation of cytoplasm in intact amoeba.  相似文献   

15.
The stiffness of glycerinated rabbit psoas fibers in the rigor state was measured at various sarcomere lengths in order to determine the distribution of the sarcomere compliance between the cross-bridge and other structures. The stiffness was determined by measuring the tension increment at one end of a fiber segment while stretching the other end of the fiber. The contribution of the end compliance to the rigor segments was checked both by laser diffractometry of the sarcomere length change and by measuring the length dependence of the Young's modulus; the contribution was found to be small. The stiffness in the rigor state was constant at sarcomere lengths of 2.4 microns or less; at greater sarcomere lengths the stiffness, when corrected for the contribution of resting stiffness, scaled with the amount of overlap between the thick and thin filaments. These results suggest that the source of the sarcomere compliance of the rigor fiber at the full overlapping of filaments is mostly the cross-bridge compliance.  相似文献   

16.
Non-specific termination of simian virus 40 DNA replication.   总被引:4,自引:0,他引:4  
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å.  相似文献   

17.
Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state have been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22±0.02 μm (n=5) in rigor with a significant 9% increase in sarcomere length in relaxing state (1.33±0.03 μm, n=5), indicating that overlap moves with the changing physiological conditions. Compression elasticity curves along with sarcomere locations have been taken by AFM compression processing. Coefficient of Z-line, I-band, Overlap, and M-line are 25±2, 8±1, 10±1, and 17±1.5 pN/nm respectively in rigor state, and 18±2.5, 4±0.5, 6±1, and 11±0.5 pN/nm respectively in relaxing state. Young's Modulus in Z-line, I-band, Overlap, and M-line are 115±12, 48±9, 52±8, and 90±12 kPa respectively in rigor, and 98±10, 23±4, 42±4, and 65±7 kPa respectively in relaxing state. The elasticity curves have shown a similar appearance to the section analysis profile of AFM height images of sarcomere and the distance between adjacent largest coefficient and Young's Modulus is equal to the sarcomere length measured from the AFM height images using section analysis, indicating that mechanic properties of fibers have a similar periodicity to the topography of fibers.  相似文献   

18.
F-actin in a glycerinated muscle fiber was specifically labeled with fluorescent phalloidin-(fluorescein isothiocyanate) FITC complex at 1:1 molar ratio. Binding of phalloidin-FITC to F-actin affected neither contraction of the fiber nor its regulation by Ca2+. Comparison of polarized fluorescence from phalloidin-FITC bound to F-actin in the relaxed state, rigor, and during isometric contraction of the fiber revealed that the changes in polarization accompanying activation are quantitatively as well as qualitatively different from those accompanying transition of the fiber from the relaxed state to rigor. The extent of the changes of polarized fluorescence during isometric contraction increased with decreasing ionic strength, in parallel with increase in isometric tension. On the other hand, polarized fluorescence was not affected by addition of ADP or by stretching of the fiber in rigor solution. It is concluded from these observations that conformational changes in F-actin are involved in the process of active tension development.  相似文献   

19.
Equatorial X-ray diffraction patterns have been studied from muscles at rest, during contraction and in rigor. It is confirmed that the relative intensity (I 1,0I 1,1) of the two main equatorial reflections depends both on the sarcomere length and on the state of the muscle; in any one state the ratio I 1,0I 1,1 increases as the sarcomere length of the muscle increases, while at any fixed sarcomere length the ratio is smaller for contracting muscle than for resting muscle and smaller still for rigor muscles. The change of I 1,0I 1,1 with change of state at constant sarcomere length is interpreted as being due to radial movement of cross-bridges: the average movement during contraction being about 40% of that in rigor.Over the whole range of sarcomere length studied (between 1.8 and 2.7 μm) there was no evidence for any change in lattice spacing when a muscle contracts isometrically.Muscles were studied generating tension after they had shortened actively against a load. The lattice spacings and intensity ratio I 1,0I 1,1 both changed during active shortening in a way entirely consistent with the sliding filament theory of contraction.  相似文献   

20.
Julian Borejdo  Susan Putnam 《BBA》1977,459(3):578-595
Single skinned glycerinated muscle fibers were labelled with the fluorescent dye N-(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS). The heavy chain of myosin (EC 3.6.1.3) was labelled predominantly when the reaction was carried out in relaxation at 0 °C. Mechanical properties of skinned fibers were little affected by labelling with the fluorophore. Rigor tension developed upon transferring native or labelled skinned fibers from relaxing to rigor solutions lacking Ca2+ was very small but could be enhanced by progressively increasing Ca2+ concentration; the rigor tension decreased with increasing sarcomere length.Polarization of fluorescence of skinned fibers reacted with 1,5-IAEDANS was measured along the line of excitation as well as at 90° to it. The mean values of parallel and perpendicular components of polarization of labelled fibers measured at 0° were close to the values obtained for native fibers irrigated with 1,5-IAEDANS-labelled heavy meromyosin, fiber “ghosts” irrigated with labelled heavy meromyosin, and oriented bundles of myofibrils reacted with the same fluorophore. Skinned fibers stretched above the rest length and then irrigated with 1,5-IAEDANS-labelled heavy meromyosin gave rise to polarized fluorescence close to the values theoretically predicted for an assembly of helically arranged fluorophores. Using 90° detection system a satisfactory fit to the theory could be obtained from single fibers labelled with 1,5-IAEDANS and measured in rigor. The angle between the fiber axis and the direction of the emission dipole of 1,5-IAEDANS attached to subfragment-1 was estimated to be near 40°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号