首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C activity was demonstrated in cytosolic fractions prepared from human amnion and decidua vera tissues. The enzyme has been partially purified and was found to be glycerophospholipid-dependent. Phosphatidylserine was most active in the stimulation of protein kinase C. Ca2+ was also required for the expression of the enzyme activity. In the presence of unsaturated diacylglycerols, maximum activation of protein kinase C was observed at suboptimal concentrations of Ca2+. A possible role of phospholipid-dependent protein kinase C in the regulation of arachidonic acid release in this tissue is discussed.  相似文献   

2.
Tissue distribution and developmental expression of protein kinase C isozymes   总被引:17,自引:0,他引:17  
Protein kinase C is a ubiquitous enzyme found in a variety of mammalian tissues and is especially highly enriched in brain and lymphoid organs. Based on biochemical and immunological analyses, we have identified three types of protein kinase C isozyme (designated types I-III) from rat brain. Monospecific antibodies against each of the protein kinase C isozymes were prepared for the determination of tissue distribution, subcellular localization, and developmental changes of these enzymes. The various protein kinase C isozymes were found to be distinctively distributed in different tissues: the type I enzyme in brain; the type II enzyme in brain, pituitary and pineal glands, spleen, thymus, retina, lung, and intestine; and the type III enzyme in brain, pineal gland, retina, and spleen. The rat brain enzymes were differentially distributed in different subcellular fractions. The type I enzyme appeared to be most lipophilic and was recovered mostly in the particulate fractions (80-90%) regardless of the EGTA- or Ca2+-containing buffer used in the homogenization. Significant amounts (30-40%) of the type II and III enzymes were recovered in the cytosolic fraction with EGTA-containing buffer. The expressions of different protein kinase C isozymes appear to be differently controlled during development. In rat brain, both type II and III enzymes were found to increase progressively from 3 days before birth up to 2-3 weeks of age and remained constant thereafter. However, the expression of the type I enzyme displayed a different developmental pattern; it was very low within 1 week, and an abrupt increase was observed between 2 and 3 weeks of age. In thymus, the type II enzyme was found to be maximal shortly after birth; whereas the same kinase in spleen was very low within 2 weeks of age, and a significant increase was observed between 2 and 3 weeks. These results demonstrate that protein kinase C isozymes are distinctively distributed in different tissues and subcellular locales and that their expressions are controlled differently during development.  相似文献   

3.
Immunochemical characterization of rat brain protein kinase C   总被引:11,自引:0,他引:11  
Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. This degraded form of the phorbol ester-binding protein still requires phospholipid for activity but, unlike the native enzyme, becomes less dependent on Ca2+. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein.  相似文献   

4.
In regenerating rat liver, an elevated protein kinase activity was detected which phosphorylated ribosomal protein S6 and histones. The properties of this enzyme were closely similar with those of protease-activated protein kinase C with Mr 45,000. During the study of the mechanism of proteolytic activation, type III protein kinase C (encoding alpha-sequence) was shown to be subjected to limited proteolysis by trypsin-like protease and converted to protein kinase M in ionic strength- and pH-dependent manner. This reaction was stimulated in the presence of Ca2+ and phospholipid under slightly higher ionic strength condition than physiological level (greater than 140 mM NaCl) and alkaline pH (7.5-8.0). These results suggest that activation of Na+/H+ exchanger in plasma membrane may trigger this type of proteolytic activation of protein kinase C. In addition to protein kinase M, another type of protease-activated kinase with Mr 80,000 was detected when limited proteolysis of protein kinase C was performed on inactive form of this enzyme (in the absence of either Ca2+ or phospholipid or both activators) under lower ionic strength condition. The molecular mass of this active enzyme was slightly smaller (approximately 200) than that of native protein kinase C. However, it is not clear at this time whether this small fragment was released from amino-terminal or carboxy-terminal domain to make protein kinase C partially active in the absence of Ca2+ and phospholipid. Although it has been proposed that proteolytic degradation of protein kinase C is involved in down regulation of this enzyme, the physiological significance of these two types of protease-activated forms of protein kinases in liver has remained obscure.  相似文献   

5.
Levels of phospholipid/Ca2+-dependent protein kinase (protein kinase C, 80 kDa) and its presumed proteolytic fragments were quantified in a variety of animal tissues and cultured human leukemic cell lines (HL60 and K562) using an immunoblot analysis technique. Of many tissues examined, the rat brain and HL60 cells were by far the richest sources of the 80-kDa native enzyme, with its concentration estimated to be about 2-3 microM in both tissues. The major enzyme species detected in most tissues, however, was the 67-kDa fragment; the 80-kDa native enzyme was present in a smaller amount except in spleen which contained nearly equal amounts of both enzyme species. It was also found that HL60 and K562 leukemic cells contained the 50-kDa species instead of the 67-kDa species. A study of the subcellular distribution of the 80- and 67-kDa species showed the enzyme to be localized predominantly in the soluble fraction for some tissues (e.g. heart) and nearly equally distributed between soluble and particulate fractions in others (e.g. spleen). In the brain, however, the majority of the enzyme was present in the particulate fraction, in agreement with the findings made with immunocytochemical localization of the enzyme. The total enzyme content in developing rat brain and heart increased during the first 2 to 4 weeks following birth and decreased to 60% of peak levels in the adult. The present immunological method, showing for the first time that the tissue levels of phospholipid/Ca2+-dependent protein kinase and its fragments can be quantitated, would be useful for studies on the regulation of cellular events and pathophysiology of tissues thought to be involved in this multi-functional protein phosphorylation system.  相似文献   

6.
Although protein kinase C, an enzyme dependent on calcium, phospholipid and diacylglycerol, has been found in high levels in ovarian tissues, its biologic function is yet unknown. In initial studies on the role of this enzyme in regulating ovarian functions, we compared protein kinase C activity in subcellular fractions of porcine corpora lutea and medium follicles. Highest protein kinase C-specific activities were found in the cytosol, followed by microsomes and mitochondria for both follicles and luteal tissues. Solubilization of all membrane-containing fractions by 0.2% Triton X-100 was required for full expression (a 4-fold average increase) of protein kinase activity. Extraction of membrane fractions with 0.5 M NaCl or sonication in a hypotonic medium revealed that 90% of the total mitochondrial protein kinase C activity and 50% of the microsomal activity was tightly membrane-bound. Characterization of both cytosolic and Triton X-100 extracted membrane preparations of luteal tissue by diethylaminoethyl (DEAE)-cellulose chromatography revealed a single peak of protein kinase C activity eluting at 80 mM NaCl. Cytosolic fractions of corpora lutea contained 3 times more protein kinase C-specific activity than did cytosolic fractions of follicles. In contrast, mitochondria from medium follicles contained 30% more specific protein kinase C activity than did luteal mitochondria. These higher cytosolic levels of protein kinase C-specific activity in corpora lutea suggest that the enzyme may play an important role in the process of luteinization or in the regulation of luteal function.  相似文献   

7.
Three distinct types of protein kinase C obtained from rat brain cytosol phosphorylated the EGF receptor of A431 epidermoid carcinoma cells at different rates. This receptor was phosphorylated most rapidly by type III protein kinase C, but slowly by type I enzyme. Type II enzyme showed intermediate activity. Chromatographic analysis indicated that A431 cells possessed only one of the three types found in rat brain, which apparently corresponded to type III enzyme. This type of protein kinase C, that is encoded by the alpha-sequence or a closely related sequence, appeared to be expressed commonly in many tissues and organs. The result implies that type III enzyme may play roles in growth promotion.  相似文献   

8.
A brain-specific multifunctional calmodulin-dependent protein kinase, calmodulin-dependent protein kinase IV, which exhibited characteristic properties quite different from those of calmodulin-dependent protein kinase II, was purified approximately 230-fold from rat cerebellum. The purified preparation gave two protein bands with molecular weights of 63,000 (alpha) and 66,000 (beta) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, both of which showed protein kinase activity as examined by the activity gel method. The molecular weight of the enzyme was estimated as about 67,000 from sedimentation coefficient (3.2 S) and Stokes radius (50 A), indicating a monomeric structure of the enzyme. The enzyme phosphorylated smooth muscle myosin light chain, synapsin I, microtubule-associated protein 2, tau protein, myelin basic protein, histone H1, and tyrosine hydroxylase in a Ca2+/calmodulin dependent manner, suggesting that the enzyme is a multifunctional calmodulin-dependent protein kinase capable of phosphorylating a large number of substrates. A synthetic peptide, Lys-Ser-Asp-Gly-Gly-Val-Lys-Lys-Arg-Lys-Ser-Ser-Ser-Ser, was found to be a specific substrate for this kinase and, using this peptide as substrate, the distribution of the enzyme activity in various rat tissues was examined. The activity was found in cerebral cortex, brain stem, and cerebellum, most abundantly in cerebellum, but other tissues tested, including liver, spleen, kidney, lung, heart, skeletal muscle, and adrenal gland showed very little activity.  相似文献   

9.
A serine protein kinase specific for ribosomal protein S6 in 40 S subunits has been identified and purified greater than 15,000-fold (with 18% recovery) from developing chicken embryos. An analogous enzyme has also been detected in serum-stimulated chicken embryo fibroblasts. The S6 kinase was identified as a phosphoprotein of Mr approximately 65,000 based on (i) gel filtration, (ii) apparent autophosphorylation of a 65-kDa protein when several enzyme preparations were incubated with [gamma-32P]ATP in the absence of added substrate, (iii) comigration of S6 kinase activity with the autophosphorylating activity over a variety of chromatographic resins, and (iv) elution and renaturation of S6 kinase activity from the 65-kDa region of a sodium dodecyl sulfate-polyacrylamide gel. The purified protein kinase is highly specific for S6 in 40 S subunits and does not appreciably phosphorylate casein, histone H1, mixed histones, protamine, polyoma virus capsid protein, or phosphorylase a/b. These characteristics suggest that this enzyme is unrelated to other protein kinases believed to be activated in stimulated cells, including cAMP-dependent protein kinase, protein kinase C (Ca2+/phospholipid-dependent enzyme), or Ca2+/calmodulin-dependent protein kinases. In fibroblasts, S6 kinase is activated by a variety of mitogenic agents including the tyrosine-specific protein kinase of Rous sarcoma virus, pp60v-src, phorbol esters, and growth factors. The present identification and purification of the S6 kinase should facilitate future studies aimed at elucidating the molecular mechanisms by which signals from these diverse stimuli rapidly converge upon and activate this enzyme.  相似文献   

10.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

11.
The cAMP-dependent protein kinase from various tissues was more thermally sensitive when activated by cAMP than the non-activated enzyme. For example, when the activity ratio (the activity of protein kinase assayed -cAMP/+cAMP) was 0.40, 80% and 76% of total hepatic cAMP dependent protein kinase activity was recoverable after incubations at 45 degrees C for 15 and 30 minutes, respectively. However, when the activity ratio was elevated to about 0.80 - 0.90 by increasing cAMP levels in vivo or adding exogenous cAMP to soluble liver extracts, the total protein kinase activity recoverable after incubations at 45 degrees C for 15 minutes was 34-44% and 19-22%, respectively. This observation was used to estimate the degree of activation of the enzyme in vivo and in vitro, since the loss of enzyme activity at 45 degrees C was directly related to the degree of activation of the enzyme in tissue extracts. The regulatory-catalytic form of cAMP-dependent protein kinase was thermally resistant at 45 degrees C unless activated by incubation with exogenous cAMP, histones or NaCl, while the catalytic form of the enzyme was highly thermally sensitive at this same temperature. These data describe a new property of the cAMP-dependent protein kinase and suggest an alternative method which measure the degree of activation of the enzyme.  相似文献   

12.
The cytoskeletons of Y-1 mouse adrenal tumor cells contain a calcium and phospholipid-dependent protein kinase (protein kinase C) that is bound sufficiently tight to resist extraction by 0.5% Triton but not by 1.0% Triton. The enzyme has been purified to near homogeneity from cytoskeleton and cytosol. It shows features typical of this type of kinase, namely a requirement for Ca2+ and phospholipid, stimulation by tumor promoters but not by nontumor-promoting phorbol esters, and inhibition by trifluoperazine. The enzyme shows specificity for four substrates found in the cytoskeleton, namely 80, 33, 20, and 18 kD. The first three substrates are phosphorylated by the enzyme; the fourth is dephosphorylated and is therefore affected by the kinase indirectly. The 80-kD protein is the kinase enzyme itself which is autophosphorylated in vitro and in the cytoskeleton. The 20-kD protein is myosin light chain. The 33- and 18-kD proteins are unidentified. The same substrates were phosphorylated when Y-1 cells were permeabilized with digitonin and incubated with [gamma-32P]ATP and phorbol-12-myristate-13-acetate. Partly purified protein kinase C changes the extent of phosphorylation of the same substrates when added to cytoskeletons previously extracted to remove endogenous protein kinase C. Addition of Ca2+, phosphatidylserine, and phorbol-12-myristate-13-acetate to cytoskeletons, and addition of these three agents plus protein kinase C to extracted cytoskeletons, causes these structures to undergo a rapid and extensive rounding. A similar change is induced in intact cells by addition of phorbol ester. It is concluded that protein kinase C is capable of changing the shape of adrenal cells by an action that involves autophosphorylation and phosphorylation of myosin light chain. This response may in turn be related to the steroidogenic responses to ACTH and cyclic AMP.  相似文献   

13.
Interaction of protein kinase C with chromaffin granule membranes has been studied as a means of investigating the translocation of protein kinase C from cytosol to intracellular membrane surfaces, which is believed to occur during secretion. Protein kinase C in an adrenal medullary soluble fraction was found to bind reversibly to granule membranes in a Ca2+-dependent fashion. Association and dissociation events were sensitive to Ca2+ concentrations in the low micromolar range, and the Ca2+ sensitivity of both processes was increased when the membranes had been preincubated with the protein kinase C-activating phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (TPA). Binding of protein kinase C to granule membranes occurred at 0 and 37 degrees C, irrespective of whether the membranes had been preincubated with TPA. However, dissociation of protein kinase C from granule membranes that had been preincubated with TPA occurred only at 37 degrees C and not at 0 degree C, even though dissociation of the enzyme from membranes which had not been preincubated with TPA would occur at both 37 and 0 degrees C. These effects of TPA were not reproduced by 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD), a phorbol ester which does not activate protein kinase C. Soluble protein kinase C activity also associated with chromaffin granules in a Ca2+-dependent manner in an adrenal medullary homogenate, indicating that granules can compete with other intracellular membranes for the binding of protein kinase C. Results obtained with this model system differ from other systems where the interaction of protein kinase C with plasma membranes has been studied and have general implications for studies performed on the translocation of protein kinase C in intact cells and for the role of protein kinase C in stimulus-secretion coupling in the chromaffin cell.  相似文献   

14.
Although the Ca2+/phospholipid-dependent protein kinase, protein kinase C, has a broad substrate specificity in vitro, the enzyme appears considerably less promiscuous in vivo. To date only a handful of proteins have been identified as physiological substrates for this protein kinase. In order to determine the basis for this selectivity for substrates in intact cells, we have probed the substrate primary sequence requirements of protein kinase C using synthetic peptides corresponding to sites of phosphorylation from four of the known physiological substrates. We have also identified the acetylated N-terminal serine of chick muscle lactate dehydrogenase as an in vitro site of phosphorylation for this protein kinase. These comparative studies have demonstrated that, in vivo, the enzyme exhibits a preference for one basic residue C-terminal to the phosphorylatable residue, as in the sequence: Ser/Thr-Xaa-Lys/Arg, where Xaa is usually an uncharged residue. Additional basic residues, both N and C-terminal to the target amino acid, enhance the Vmax and Km parameters of phosphorylation. None of the peptides based on physiological phosphorylation sites of protein kinase C was an efficient substrate of cAMP-dependent protein kinase, emphasizing the distinct site-recognition selectivities of these two pleiotropic protein kinases. The favorable kinetic parameters of several of the synthetic peptides, coupled with their selectivity for phosphorylation by protein kinase C, will facilitate the assay of this enzyme in the presence of other protein kinases in tissue and cell extracts.  相似文献   

15.
1. Phosphofructo 2-kinase from chicken erythrocytes copurifies with fructose 2,6-bisphosphatase activity, suggesting that the enzyme is bifunctional. 2. Similarly to phosphofructo 2-kinase from other tissues it is activated by inorganic phosphate, and inhibited by phosphoenol pyruvate, sn-glycerol 3-phosphate and citrate. However, it has some characteristics different than those of chicken liver phosphofructo 2-kinase, indicating that it is a distinct isozyme. 3. The phosphofructo 2-kinase/fructose 2,6-bisphosphatase activity ratio of the erythrocyte enzyme is one order of magnitude higher than that of the enzyme from liver. In contrast with the chicken liver enzyme, phosphofructo 2-kinase from chicken erythrocytes is activated by dithiothreitol and its activity increases with pH. 4. Chicken erythrocyte phosphofructo 2-kinase activity is neither modified by cyclic AMP-dependent protein kinase or casein kinase I and II. In contrast, it is partially inhibited by protein kinase C.  相似文献   

16.
Maximal protein kinase C activity with vesicles of phosphatidic acid and 1,2-dioleoyl-sn-glycerol is observed in the absence of added Ca2+. Addition of phosphatidylcholine to these vesicles restores some calcium dependence of enzyme activity. 1,2-Dioleoyl-sn-glycerol eliminates the Ca(2+)-dependence of protein kinase C activity found with phosphatidic acid alone. Phorbol esters do not mimic the action of 1,2-dioleoyl-sn-glycerol in this respect. This suggests that the 1,2-dioleoyl-sn-glycerol effect is a result of changes it causes in the physical properties of the membrane rather than to specific binding to the enzyme. The effect of 1,2-dioleoyl-sn-glycerol on the phosphatidic-acid-stimulated protein kinase C activity is dependent on the molar fraction of 1,2-dioleoyl-sn-glycerol used and results in a gradual shift from Ca2+ stimulation at low 1,2-dioleoyl-sn-glycerol concentrations to calcium inhibition at higher concentrations of 1,2-dioleoyl-sn-glycerol. Phosphatidylserine-stimulated activity is also shown to be largely independent of the calcium concentration at higher molar fractions of 1,2-dioleoyl-sn-glycerol. Thus, with certain lipid compositions, protein kinase C activity becomes independent of the calcium concentration or requires only very low, stoichiometric binding of Ca2+ to high affinity sites on the enzyme. Protein kinase C can bind to phosphatidic acid vesicles more readily than it can bind to phosphatidylserine vesicles in the absence of calcium. Addition of 1,2-dioleoyl-sn-glycerol to phosphatidylserine vesicles promotes the partitioning of protein kinase C into the membrane in the absence of added Ca2+. There is no isozyme specificity in this binding. These results suggest that a less-tightly packed headgroup region of the bilayer causes increased insertion of protein kinase C into the membrane. This is a necessary but not sufficient condition for activation of the enzyme in the presence of EGTA.  相似文献   

17.
Using antibody prepared against pure uridine kinase from Ehrlich ascites cells, we have measured the expression of enzyme protein by the Western blot technique. Variations were observed in the Mr of the enzyme subunit for uridine kinase from different species: 32,000 (mouse Ehrlich ascites cells), 30,000 (normal human lymphocytes), 28,000 (mouse tissues), 27,500 (rat tissues). For different normal tissues from the same species, there was no significant variation in the subunit size. Transformed human and mouse cell lines, selected for a deficiency of uridine kinase activity in the presence of inhibitors activated by this enzyme, expressed two cross-reacting proteins, one with a normal (30,000) and one with a smaller (21,000) subunit molecular weight than was found in the parental cell line (human lymphoma), or only a smaller protein of Mr 25,000 (mouse lymphoma). Our results show that selection protocols using metabolite inhibitors do not always repress the expression of the enzyme but instead may lead to selection of those cells that have a mutation in the uridine kinase gene, resulting in the expression of an inactive enzyme. The expression of uridine kinase protein changes when cells are stimulated to divide. For both mouse fibroblasts and human lymphocytes, expression of uridine kinase protein as well as activity clearly increased after cells were stimulated to grow. In fibroblasts, increases are seen by 3 hr after stimulation, and plateau after 9 hr at a sevenfold increase. In lymphocytes, no change is seen until 12 hr after stimulation, and a plateau is not reached until 72 hr, with a total increase of approximately 50-fold. There has been considerable interest in the possibility of uridine kinase isozymes. Except for cells that have been mutagenized, the present results show that, as judged by subunit molecular weight, there appears to be only one enzyme form in normal and neoplastic cells or in cells in which uridine kinase activity is induced.  相似文献   

18.
Subcellular localization of protein kinase CK2   总被引:17,自引:0,他引:17  
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function.  相似文献   

19.
An enzyme which catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate (TDP), thiamindiphosphate kinase (ATP:thiamin diphosphate phosphotransferase) [EC 2.7.4.15], was detected in animal tissues. The enzyme was partially purified (150-fold) from the cytosol fraction of guinea pig brain. The enzyme reaction required free (not protein-bound) TDP, ATP, Mg2+, and a cofactor, which is a low molecular weight and heat-stable compound. The enzyme activity was optimal at pH 11 and at 25 degrees C. A stoichiometric transfer of 32P from [gamma-32P]ATP to TDP was demonstrated. Km values for TDP and ATP were calculated to be 1.1 mM and 10 microM, respectively, and Vmax was 868 nmol/mg of protein/hr. The enzyme was found solely in the cytosol fraction of guinea pig brain and was also detectable in the skeletal muscle and heart. These results provide strong evidence for the existence of TDP kinase in animal tissues.  相似文献   

20.
We describe a rapid purification of protein kinase C from rat brain cytosol employing a specific substrate, protamine-coupled to agarose. Sequential chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and protamine-agarose columns resulted in a 1,500-fold purification of protein kinase C. SDS-PAGE analysis of the purified enzyme resolved a doublet protein of 77-80 kDa. This doublet was recognized by a polyclonal antiserum against protein kinase C. Proteolytic digestion of each protein band generated similar peptide fragments. The underlying principle of the protamine sulfate purification method was also clarified. Protamine can serve as a Ca2+/phospholipid-independent substrate. We demonstrate phosphorylation of protamine on the column; phosphorylated protamine did not bind the enzyme with the same affinity and this covalent modification was most probably responsible for releasing the bound enzyme from the column after addition of Mg2+ and ATP. The C kinase inhibitor, H7, inhibits protamine phosphorylation in a dose-dependent fashion but does not prevent binding of the enzyme to a protamine-agarose column. We therefore conclude that protamine interacts with the active center of the enzyme enabling it to be phosphorylated, upon which it loses its binding affinity for C kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号