首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.  相似文献   

2.
Two maize (Zea mays L.) breeding populations with very high concentrations of maysin, a silk-expressed flavone glycoside, were tested for their ability to resist ear damage by the corn earworm, Helicoverpa zea Boddie, under field conditions. Tests were conducted in 2000 and 2001 at multiple locations in Georgia. The high maysin populations, EPM6 and SIM6, as well as resistant and susceptible checks, were scored for silk-maysin content, H. zea damage, and husk characters. In 2000, there was a negative correlation between husk tightness and earworm damage at three of five locations, while there was no significant correlation between damage and maysin content at any location. In 2001, EPM6 and SIM6 had approximately ten times the maysin content of the low-maysin control genotypes; nevertheless, earworm damage to EPM6 and SIM6 was either greater than or not significantly different from the low-maysin genotypes at all locations. The resistant control genotype, Zapalote Chico, had significantly less earworm damage than EPM6 and SIM6 for both years at all locations. The results of this study highlight the importance of identifying and quantifying husk and ear traits that are essential to H. zea resistance in maize.  相似文献   

3.
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.  相似文献   

4.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

5.
Many of the lepidopterous insects which attack sweet corn, Zea mays L., are susceptible to insecticidal proteins produced by Bacillus thuringiensis ssp. kurstaki (Berliner) (Btk). Transgenic sweet corn expressing a synthetic cry gene for production of a Btk-insecticidal protein may provide a more environmentally acceptable means of sweet corn production. Eight transgenic sweet corn hybrids containing a synthetic gene for CryIA(b) protein production (BT11 event) were evaluated for resistance to the corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith). Laboratory tests revealed that all Btk sweet corn hybrids were highly resistant to leaf and silk feeding by neonate 3 and 6 d old corn earworm larvae. Ear damage in the field to the Btk sweet corn hybrids caused by corn earworm was negligible. All Btk sweet corn hybrids, except Btk 95-0901, were moderately resistant to leaf and silk feeding by the fall armyworm. Survival and weight gain were reduced when neonates were fed excised whorl leaves of the Btk plants. Weight gain, but not survival, was reduced when 3- and 6-d-old fall armyworm larvae were fed excised whorl leaves of the Btk plants. Btk sweet corn hybrids appear to be ideal candidates for use in integrated pest management (IPM) programs for both the fresh and processing sweet corn markets, and their use should drastically reduce the quantity of insecticides currently used to control these pests in sweet corn. With appropriate cultural practices, it is highly unlikely that Btk sweet corn will contribute to the development of resistance to Btk proteins in these insects because of the high toxicity of the Cry proteins expressed in these sweet corn hybrids and the harvest of sweet corn ears from fields before larvae can complete development.  相似文献   

6.
Binding studies using (125)I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.  相似文献   

7.
Cry1Ac protoxin (the active insecticidal toxin in both Bollgard and Bollgard II cotton [Gossypium hirsutum L.]), and Cry2Ab2 toxin (the second insecticidal toxin in Bollgard II cotton) were bioassayed against five of the primary lepidopteran pests of cotton by using diet incorporation. Cry1Ac was the most toxic to Heliothis virescens (F.) and Pectinophora gossypiella (Saunders), demonstrated good activity against Helicoverpa zea (Boddie), and had negligible toxicity against Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith). Cry2Ab2 was the most toxic to P. gossypiella and least toxic to S. frugiperda. Cry2Ab2 was more toxic to S. exigua and S. frugiperda than Cry1Ac. Of the three insect species most sensitive to both Bacillus thuringiensis (Bt) proteins (including H. zea), P. gossypiella was only three-fold less sensitive to Cry2Ab2 than Cry1Ac, whereas H. virescens was 40-fold less sensitive to Cry2Ab2 compared with CrylAc. Cotton plants expressing Cry1Ac only and both Cry1Ac and Cry2Ab2 proteins were characterized for toxicity against H. zea and S.frugiperda larvae in the laboratory and H. zea larvae in an environmental chamber. In no-choice assays on excised squares from plants of different ages, second instar H. zea larvae were controlled by Cry1Ac/Cry2Ab2 cotton with mortality levels of 90% and greater at 5 d compared with 30-80% mortality for Cry1Ac-only cotton, depending on plant age. Similarly, feeding on leaf discs from Cry1Ac/Cry2Ab2 cotton resulted in mortality of second instars of S.frugiperda ranging from 69 to 93%, whereas exposure to Cry1Ac-only cotton yielded 20-69% mortality, depending on plant age. When cotton blooms were infested in situ in an environmental chamber with neonate H. zea larvae previously fed on synthetic diet for 0, 24, or 48 h, 7-d flower abortion levels for Cry1Ac-only cotton were 15, 41, and 63%, respectively, whereas for Cry1Ac/Cry2Ab2 cotton, flower abortion levels were 0, 0, and 5%, respectively. Cry1Ac and Cry2Ab2 concentrations were measured within various cotton tissues of Cry1Ac-only and Cry1Ac/Cry2Ab2 plants, respectively, by using enzyme-linked immunosorbent assay. Terminal leaves significantly expressed the highest, and large leaves, calyx, and bracts expressed significantly the lowest concentrations of Cry1Ac, respectively. Ovules expressed significantly the highest, and terminal leaves, large leaves, bracts, and calyx expressed significantly (P < 0.05) the lowest concentrations of Cry2Ab2. These results help explain the observed differences between Bollgard and Bollgard II mortality against the primary lepidopteran cotton pests, and they may lead to improved scouting and resistance management practices, and to more effective control of these pests with Bt transgenic crops in the future.  相似文献   

8.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

9.
In summer 2000, adult female bollworm moths, Helicoverpa zea (Boddie), were collected from light-traps at four locations near the Tidewater Research Station, Plymouth, NC. Female moths were allowed to lay eggs, and at hatch, 72 larvae from each female were screened for growth rate on normal artificial diet and on diets containing 5.0 microg of either Cry1Ac or Cry2Aa Bt toxin per milliliter of diet. The growth rate bioassays were performed to isolate nonrecessive Bt resistance genes present in field populations of bollworm. We found one individual out of 583 screened that appeared to carry a major gene for resistance to Cry1Ac. Assuming four alleles per individual, the gene frequency is 1/2332 or 0.0003. Other females appeared to have minor genes for Cry1Ac resistance or major genes with lower levels of dominance. We also found one individual out of 646 screened that appeared to carry a major gene for resistance to Cry2Aa. The gene frequency for Cry2Aa resistance was estimated at 1/2584 or 0.00039. Again, other females seemed to carry additional minor resistance genes. Along with other results that indicate partially dominant inheritance of Cry1Ac resistance in bollworm, these allele frequency estimates are important for determining the rate of resistance evolution in H. zea to specific Bt toxins.  相似文献   

10.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

11.
12.
An J  Gao Y  Wu K  Gould F  Gao J  Shen Z  Lei C 《Journal of economic entomology》2010,103(6):2169-2173
Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.  相似文献   

13.
Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.  相似文献   

14.
The susceptibility of one of the most important pests in southern Africa, Helicoverpa armigera (Lepidoptera: Noctuidae), to Bacillus thuringiensis Cry proteins was evaluated by bioassay. Cry proteins were produced in Escherichia coli BL21 cells that were transformed with plasmids containing one of six cry genes. The toxicity of each Cry protein to H. armigera larvae was determined by the diet contamination method for second instar larvae and the droplet feeding method for neonate larvae. For each of the proteins, dose-mortality and dose-growth inhibition responses were analyzed and the median lethal dose (LD(50)) and median inhibitory dose (ID(50)) determined. Second instar larvae were consistently less susceptible to the evaluated Cry proteins than neonate larvae. The relative toxicity of Cry proteins ranked differently between neonate larvae and second instar larvae. On the basis of the LD(50) and ID(50) values, Cry1Ab, Cry1Ac, and Cry2Aa were the most toxic of the evaluated proteins to H. armigera larvae. The study provides an initial benchmark of the toxicity of individual Cry proteins to H. armigera in South Africa.  相似文献   

15.
Glasshouse and laboratory experiments were conducted to evaluate the relative fitness of Cry1A-susceptible and laboratory-selected resistant strains of Helicoverpa armigera (Hübner). Life history parameters of H. armigera larvae feeding on young cotton plants showed a significant developmental delay of up to 7 d for the resistant strain compared with the susceptible strain on non-Bacillus thuringiensis (Bt) cotton. This fitness cost was not evident on artificial diet. There was no developmental delay in the F1 hybrid progeny from the reciprocal backcross of the resistant and susceptible strains, indicating that the fitness cost is recessive. In two cohorts tested, survival to pupation of resistant larvae on Bt cotton expressing Cry1Ac was 54 and 51% lower than on non-Bt cotton, whereas all susceptible and F1 larvae tested on Cry1Ac cotton were killed. Mortality of susceptible larvae occurred in the first or second instar, whereas the F1 larvae were able to develop to later instars before dying, demonstrating that resistance is incompletely recessive. The intrinsic rate of increase was reduced by >50% in the resistant strain on Cry1Ac cotton compared with the susceptible strain on non-Bt cotton. There was a significant reduction in the survival of postdiapausal adults from the resistant strain and the F1 strains, indicating that there is a nonrecessive overwintering cost associated with Cry1A resistance in H. armigera.  相似文献   

16.
为了进一步明确Vip3Aa的作用机制, 利用透射电镜观察了棉铃虫4龄幼虫取食含Vip3Aa蛋白饲料后中肠杯状细胞的病理变化, 并比较了其病变与取食含Cry1Ac饲料后棉铃虫组织病变的差异。取食含Vip3Aa饲料后, 棉铃虫幼虫的中肠杯状细胞逐渐发生病变, 主要表现为: 微绒毛肿胀、 脱落; 细胞核核膜界限不清晰, 染色质分布不均匀; 线粒体变形、 数量减少, 内脊不清晰; 内质网杂乱不规则、 数量减少。与取食Cry1Ac的棉铃虫相比, 取食Vip3Aa的棉铃虫中肠杯状细胞发生病变较为缓慢, 在取食12 h后才发现明显病变, 随着取食时间的增加病变越来越明显; 而取食Cry1Ac的棉铃虫2 h后中肠杯状细胞就出现明显病变。本研究可为Vip3Aa作为新毒素策略的重要蛋白在棉铃虫Helicoverpa armigera综合防治中更好地发挥作用提供理论依据。  相似文献   

17.
18.
Plant resistance to insects, specifically antibiosis, offers a biologically, economically, and environmentally sound alternative to pesticides for controlling the corn earworm, Helicoverpa zea (Boddie), in corn, Zea mays L. Our study included a series of experiments to evaluate the effects of resistant and susceptible silks incorporated into pinto bean diets on the infectivity of a nuclear polyhedrosis virus (Elcar) applied to the surface of diet with and without formalin. Neonate, 4- and 8-day-old corn earworm larvae were tested. The combination of Elcar and resistant corn silks increased mortality of the corn earworm neonates. When resistant silks were tested in diet without formalin, the surface of the diet darkened and the neonates tended to burrow into the diet to feed, reducing the amount of virus consumed and hence mortality. After feeding on diets containing resistant silks for 4 or 8 days, earlier and higher mortality was associated with lower weight of larvae that were exposed to Elcar. Elcar caused 49% (diet with formalin) and 87% (diet without formalin) mortality of the 8-day-old larvae that had fed on the resistant silk diets as opposed to 0 and 3% mortality for larvae that had fed on diets without the resistant silks prior to treatment with the virus. Our results demonstrate that resistant corn silks and Elcar are compatible approaches for controlling corn earworm larvae.  相似文献   

19.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

20.
Pairs of Helicoverpa zea (Boddie) larvae reared on diet-incorporated MON810 transgenic leaf tissue of field corn (Zea mays L.) were observed in the laboratory to characterize effects of sublethal levels of Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins on cannibalistic behavior and mortality. Feeding on sublethal levels of Bt corn reduced the frequency of cannibalistic behaviors exhibited by H. zea when uneven instars were paired together. Exposure to the Bt endotoxin had no significant effect on when cannibalistic mortality occurred or the level of mortality as a result of cannibalism. Assuming that H. zea larvae reared on nonBt corn tissue behaved in a similar way that resistant larvae would if feeding on Bt tissue, sublethal effects of Cry1Ab intoxication may reduce the chances of successful cannibalism by susceptible larvae and thus play a disproportionate role in the survival of multiple ear infestations. Furthermore, cannibalistic encounters could result in partially resistant larvae feeding on nontoxic food, thus temporarily providing an escape from exposure to the Bt endotoxin. These behavior alterations could increase the selective differential between susceptible individuals and those carrying resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号