首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moon EY  Lee GH  Lee MS  Kim HM  Lee JW 《Life sciences》2012,90(9-10):373-380
AimsWe investigated whether cAMP-mediated protein kinase A(PKA) and Epac1/Rap1 pathways differentially affect brain tumor cell death using 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone(rolipram), specific phosphodiesterase type IV(PDE IV) inhibitor.Main methodsA172 and U87MG human glioblastoma cells were used. Percentage of cell survival was determined by MTT assay. PKA and Epac1/Rap1 activation was determined by western blotting and pull-down assay, respectively. Cell cycle and hypodiploid cell formation were assessed by flow cytometry analysis.Key findingsNon-specific PDE inhibitors, isobutylmethylxanthine(IBMX) and theophylline reduce survival percentage of A172 and U87MG cells. The expression of PDE4A and PDE4B was detected in A172 and U87MG cells. Rolipram-treated A172 or U87MG cell survival was lower in the presence of forskolin, adenylate cyclase activator, than that in its absence. Co-treatment with rolipram and forskolin also enhanced CREB phosphorylation on serine 133 that was inhibited by H-89, PKA inhibitor and cAMP-responsive guanine nucleotide exchange factor 1(Epac1), a Rap GDP exchange factor-mediated Rap1 activity in A172 cells. When A172 cells were treated with cell-permeable dibutyryl-cAMP(dbcAMP), PKA activator or 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate(CPT), Epac1 activator, basal level of cell death was increased and cell cycle was arrested at the phase of G2/M. Rolipram-induced A172 cell death was also increased by the co-treatment with dbcAMP or CPT, but it was inhibited by the pre-treatment with H-89.SignificanceThese findings demonstrate that PKA and Epac1/Rap1 pathways could cooperatively play a role in rolipram-induced brain tumor cell death. It suggests that rolipram might regulate glioblastoma cell density through dual pathways of PKA- and Epac1/Rap1-mediated cell death and cell cycle arrest.  相似文献   

2.
《Cellular signalling》2014,26(9):1807-1817
Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations and effects of adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP). The role of PDEs in malignant tumor cells is still uncertain. The role of PDEs, especially PDE2, in human malignant melanoma PMP cell line was examined in this study. In PMP cells, 8-bromo-cAMP, a cAMP analog, inhibited cell growth and invasion. However, 8-bromo-cGMP, a cGMP analog, had little or no effect. PDE2 and PDE4, but not PDE3, were expressed in PMP cells. Growth and invasion of PMP cells were inhibited by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a specific PDE2 inhibitor, but not by rolipram, a specific PDE4 inhibitor. Moreover, cell growth and invasion were inhibited by transfection of small interfering RNAs (siRNAs) specific for PDE2A and a catalytically-dead mutant of PDE2A. After treating cells with EHNA or rolipram, intracellular cAMP concentrations were increased. Growth and invasion were stimulated by PKA14-22, a PKA inhibitor, and inhibited by N6-benzoyl-c AMP, a PKA specific cAMP analog, whereas 8-(4-chlorophenylthio)-2′-O-methyl-cAMP, an Epac specific cAMP analog, did not. Invasion, but not growth, was stimulated by A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide. Based on these results, PDE2 appears to play an important role in growth and invasion of the human malignant melanoma PMP cell line. Selectively suppressing PDE2 might possibly inhibit growth and invasion of other malignant tumor cell lines.  相似文献   

3.
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3′,5′-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN–optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma.This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

4.
Background aimsObesity is correlated with chronic low-grade inflammation. Thus the induction of inflammation could be used to stimulate adipose tissue formation in tissue-engineering approaches. As nitric oxide (NO) is a key regulator of inflammation, we investigated the effect of NO and its downstream signaling molecule guanosine 3′,5′-cyclic monophosphate (cGMP) as well as adenosine 3′,5′-cyclic monophosphate (cAMP) on preadipocytes in vitro.MethodsPreadipocytes were isolated from human subcutaneous adipose tissue, cultured until confluence, and differentiated. The NO donor diethylenetriamine (DETA)/NO (30–150 μm) was added during proliferation and differentiation. Additionally, cGMP/cAMP analogs 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate (8-pCPT-cGMP) and 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP), and the adenylyl cyclase activator forskolin, specific guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and adenylyl cyclase inhibitor 2′-5′-dideoxyadenosine (ddA), were applied. Proliferation and differentiation were evaluated.ResultsDETA/NO in combination with the standard differentiation procedure significantly enhanced maturation of precursor cells to adipocytes. Proliferation, in contrast, was inhibited in the presence of NO. The application of cGMP and cAMP, respectively, increased pre-adipocyte differentiation to an even higher extent than NO. Inhibitors of the underlying pathways caused a significant decrease in adipogenic conversion.ConclusionsOur results support the application of NO donors during transplantation of preadipocytes in a 3-dimensional setting to accelerate and optimize differentiation. The results suggest that, instead of the rather instable and reactive molecule NO, the application of cGMP and cAMP would be even more effective because these substances have a stronger adipogenic effect on preadipocytes and a longer half-life than NO. Also, by applying inhibitors of the underlying pathways, the induced inflammatory condition could be regulated to the desired level.  相似文献   

5.
Thrombin acts on mammalian cells through the specific, so-called protease-activated receptors (PARs). The thrombin action is mediated via three out of four known types of these receptors—PAR1,3,4. Mammalian thrombin receptors, apart from performance of other functions, control cardiac and vascular contractility. It is not known whether receptors of such kind exist in invertebrate animals. In the present work we have showed for the first time that thrombin in the concentration range of 0.01–1 units/ml increases amplitude of contractions of the isolated heart ventricle of the edible snail Helix pomatia. Its effect is reproduced by peptide ligands of receptors PAR1 and PAR4 that have sequences Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN) and Glu-Tyr-Pro-Gly-Lys-Phe (QYPGKF), respectively. A potent activator of cardiac contractility of H. pomatia is serotonin. A comparative study of the mechanisms of action of serotonin and thrombin on the edible snail heart was carried out. cAMP participates in transduction of signal from serotonin receptors. On the membrane preparation from the H. pomatia heart, it was shown that thrombin and peptide ligands PAR1 and PAR4, unlike serotonin, did not increase adenylyl cyclase activity. Thus, mechanism of activation of cardiac contractility of H. pomatia by thrombin differs from that of serotonin. It is suggested that molluscs have receptors homologous to protease-activated mammalian receptors.  相似文献   

6.
Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac.  相似文献   

7.
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression.  相似文献   

8.
Myocyte apoptosis plays an important role in myocardial infarction and cAMP is crucial in the regulation of myocyte apoptosis. Phosphodiesterase-4 (PDE4) inhibitor blocks the hydrolysis of cAMP via inhibition of PDE4 and is attractive candidate for novel anti-inflammatory drugs. However, its function in cardiovascular diseases and cardiomyocyte apoptosis is unclear. Therefore, we investigated whether roflumilast, a PDE4 inhibitor, exerts protective effect against NO-induced apoptosis in both of H9c2 cells and neonatal rat cardiomyocytes (NRCMs), focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). According to our data, intracellular cAMP was increased by roflumilast treatment in H9c2 cells and NRCMs. Roflumilast inhibited SNP-induced apoptosis and this effect was reversed by PKA specific inhibitor H-89 and KT-5720. In addition, PKA specific activator N(6)-benzoyladenosine 3',5-cyclic monophosphate (N(6)Bz-cAMP) mimicked the effects of roflumilast. CREB phosphorylation by roflumilast was also inhibited by H-89, indicating that roflumilast protects SNP-induced apoptosis via PKA-dependent pathway. Roflumilast increased Epac1/GTP-Rap1 and the protective effect was abolished by Epac1 siRNA transfection, demonstrating that Epac signaling was also involved in this protective response. In support, Epac specific activator 8-(4-chlrorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP) protected SNP-induced apoptosis. PI3K/Akt inhibitor LY294002 blocked roflumilast-induced Akt phosphorylation and protective effect. Furthermore, inhibition of Epac1 with siRNA had no effect on roflumilast-induced CREB phosphorylation, whereas inhibited Akt phosphorylation, implicating that Akt phosphorylation was regulated by Epac pathway. In addition, it was also observed that rolipram and cilomilast exert similar effects as roflumilast. In summary, our data indicate that roflumilast protects NO-induced apoptosis via both cAMP-PKA/CREB and Epac/Akt-dependent pathway. Our study suggests a possibility of PDE4 inhibitor roflumilast as a potential therapeutic agent against myocardial ischemia/reperfusion (I/R) injury.  相似文献   

9.
We have observed that agents that are known to elevate intracellular levels of cAMP such as N6,O2-dibutyryl adenosine 3′,5′-cyclic monophosphoric acid (dbcAMP) and theophylline cause a remarkable stimulatory effect on the lymphocyte receptor mobility phenomenon. Increased intracellular concentration of cAMP enhances not only antibody-induced but also Con A-induced lymphocyte capping events in T-lymphoma cells. In addition, we have noted that N2,O2-dibutyryl guanosine 3′,5′-cyclic monophosphoric acid (dbcGMP) does not stimulate but actually slightly inhibits the receptor movement. Furthermore, we have determined cAMP levels to increase greater than twofold during ligand-induced capping using a radioimmunoassay. Therefore, our data strongly suggest that cyclic adenylic monophosphoric acid (and not cGMP) is specifically involved in the redistribution of lymphocyte membrane proteins induced by both antibody and Con A.  相似文献   

10.
Abstract

Several acyclic analogues of guanosine, 2′-deoxy-2′, 3′-secoguanosine(3), 3′-deoxy-2′, 3′-secoguanosine (4), and 2′-, 3′-dideoxy-2′-, 3′-secoguanosine were synthesized from guanosine. In addition, the 3′-, 5′-cyclic phosphate (21) and 3′-, 5′-cyclic methylphosphonates (22a, b) of 3 were also prepared. At concentrations up to 300 μM none of these compounds had significant antiherpetic activity in antiviral assays in vitro.  相似文献   

11.
《Cellular signalling》2002,14(3):277-284
PDE7A is a recently described 3′,5′-cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) whose expression has been detected in T-cells. As treatment with the methylxanthine theophylline, a nonspecific PDE inhibitor, induces apoptosis in leukemic cells from patients with the B-lineage malignancy chronic lymphocytic leukemia (CLL), we sought to determine if PDE7A was a target of theophylline therapy in such cells. Western analysis revealed expression of PDE7A in normal human splenic B-cells, primary CLL cells, and in a CLL-derived cell line (WSU-CLL). Among the six cAMP PDEs (PDE1B, PDE3B, PDE4A, PDE4B, PDE4D, and PDE7) examined in WSU-CLL, only PDE7A levels were augmented by treatment with methylxanthines. The activity of PDE7A isolated from the WSU-CLL cell line by immunoprecipitation was inhibited by theophylline and IBMX with IC50 values of 343.5 and 8.6 μM, respectively. WSU-CLL PDE7A was also up-regulated by a novel specific inhibitor (IC242), which inhibits PDE7A from WSU-CLL cells with an IC50 value of 0.84 μM. IC242-mediated up-regulation of PDE7A was blocked by the protein kinase A (PKA) inhibitor H-89.  相似文献   

12.
Analogs of adenosine-3′,5′-cyclic phosphate (cAMP) modified in positions 2 (Cl, Br, SCH3) and 2′ (2,4-dinitrophenyl) and doubly modified in positions 1 and 2 (N1O and Cl), 2 and 2′ (Cl and 2,4-dinitrophenyl), have been synthesized by convenient methods. These derivatives have been examined as alternative activators of cAMP-dependent protein kinase isolated from bovine muscle and as alternative substrates for a cyclic phosphodiesterase from bovine heart. All analogs activated the kinase, most of them being more effective than cAMP. All were degraded by the diesterase, several at lower rates.  相似文献   

13.
Several naturally-occurring lipids but not n-propanol, guanidine-HCl or a variety of synthetic detergents stimulate the 3′,5′-cyclic AMP-phosphodiesterase activities of a supernatant fraction of brain at 1.25 × 10?7 M cAMP. The time courses of the reaction are linear in the presence and absence of lipid. On the other hand, lipid has different effects on various phosphodiesterase activities in fractions obtained after gel filtration of the crude extract. It stimulates the phosphodiesterase activities measured at 1.25 × 10?7 M and 10?4 M 3′,5′-cyclic-AMP and 1.25 × 10?7 M 3′,5′-cyclic GMP in two of the fractions partially retained in the gel. However, lipid has little effect on the enzymatic hydrolysis of low concentrations of cAMP or cGMP and markedly inhibits the hydrolysis of high concentrations of cAMP by the fraction excluded from the gel.  相似文献   

14.
The vacuolar H(+)-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V(0) and V(1) subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V(1) components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V(1) translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA.  相似文献   

15.
cAMP pathway activation by thyrotropin (TSH) induces differentiation and gene expression in thyrocytes. We investigated which partners of the cAMP cascade regulate gene expression modulations: protein kinase A and/or the exchange proteins directly activated by cAMP (Epac). Human primary cultured thyrocytes were analysed by microarrays after treatment with the adenylate cyclase activator forskolin, the protein kinase A (PKA) activator 6-MB-cAMP and the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP (007) alone or combined with 6-MB-cAMP. Profiles were compared to those of TSH. Cultures treated with the adenylate cyclase- or the PKA activator alone or the latter combined with 007 had profiles similar to those induced by TSH. mRNA profiles of 007-treated cultures were highly distinct from TSH-treated cells, suggesting that TSH-modulated gene expressions are mainly modulated by cAMP and PKA and not through Epac in cultured human thyroid cells. To investigate whether the Epac-Rap-RapGAP pathway could play a potential role in thyroid tumorigenesis, the mRNA expressions of its constituent proteins were investigated in two malignant thyroid tumor types. Modulations of this pathway suggest an increased Rap pathway activity in these cancers independent from cAMP activation.  相似文献   

16.
Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 μM [γ?32P] ATP is usedas substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 μM no significant increase in protein phosphorylation was seen.Incubation of the homogenate with 400 μM ATP and 100 μM dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

17.
Yu S  Fan F  Flores SC  Mei F  Cheng X 《Biochemistry》2006,45(51):15318-15326
Exchange proteins directly activated by cAMP (Epac) make up a family of cAMP binding domain-containing proteins that play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Ras-proximate proteins. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen-deuterium (H-D) exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and structural modeling. Our studies show that unlike that of cAMP-dependent protein kinase (PKA), the classic intracellular cAMP receptor, binding of cAMP to Epac does not induce significant changes in overall secondary structure and structural dynamics, as measured by FT-IR and the rate of H-D exchange, respectively. These results suggest that Epac activation does not involve significant changes in the amount of exposed surface areas as in the case of PKA activation, and conformational changes induced by cAMP in Epac are most likely confined to small local regions. Homology modeling and comparative structural analyses of the CBDs of Epac and PKA lead us to propose a model of Epac activation. On the basis of our model, Epac activation by cAMP employs the same underlying structural principal utilized by PKA, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different. In addition, we predict that during Epac activation the first beta-strand of the switchboard switches its conformation to a alpha-helix, which folds back to the beta-barrel core of the CBD and interacts directly with cAMP to form the base of the cAMP-binding pocket.  相似文献   

18.
Cytidine 2′,3′-cyclic monophosphate (2′,3′-cCMP) and uridine 2′,3′-cyclic monophosphate (2′,3′-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2′,3′-cCMP and 2′,3′-cUMP were determined. Addition of 2′,3′-cCMP and 2′,3′-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures.  相似文献   

19.
Small intact frog skeletal muscles were exposed to radioactively labeled adenosine 3′,5′-cyclic monophosphate (cAMP) during incubation in frog Ringer's solution buffered with Tris (RT). The fate of the nucleotide was followed by measuring the products in the incubation media. Paper chromatography was used for the separation and identification of these products; the amounts were measured using liquid scintillation spectrometry. It was found that cAMP was degraded to AMP, which was then converted to IMP and, to some extent, inosine. The degradation of cAMP to AMP was markedly inhibited by theophylline (10 mM) suggesting the presence of cAMP phosphodiesterase activity at the muscle surface. Kinetic studies of enzyme activity in situ revealed two apparent Km values: 0.33 μm and 55 μm. Insulin (0.3 unit/ml) increased the phosphodiesterase activity at concentrations of cAMP ranging from 2 to 17 μm. The possible roles of the surface phosphodiesterase were discussed.  相似文献   

20.
Cardiac remodeling was shown to be associated with reduced gap junction expression after myocardial infarction. A reduction in gap junctional proteins between myocytes may trigger ventricular arrhythmia. Therefore, we investigated whether N-acetylcysteine exerted antiarrhythmic effect by preserving connexin43 expression in postinfarcted rats, focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Male Wistar rats after ligating coronary artery were randomized to either vehicle, or N-acetylcysteine for 4 weeks starting 24 hours after operation. Infarct size was similar between two groups. Compared with vehicle, cAMP levels were increased by N-acetylcysteine treatment after infarction. Myocardial connexin43 expression was significantly decreased in vehicle-treated infarcted rats compared with sham operated rats. Attenuated connexin43 expression and function were blunted after administering N-acetylcysteine, assessed by immunofluorescent analysis, dye coupling, Western blotting, and real-time quantitative RT-PCR of connexin43. Arrhythmic scores during programmed stimulation in the N-acetylcysteine-treated rats were significantly lower than those treated with vehicle. In an ex vivo study, enhanced connexin43 levels afforded by N-acetylcysteine were partially blocked by either H-89 (a PKA inhibitor) or brefeldin A (an Epac-signaling inhibitor) and completely blocked when H-89 and brefeldin A were given in combination. Addition of either the PKA specific activator N6Bz or Epac specific activator 8-CPT did not have additional increased connexin43 levels compared with rats treated with lithium chloride alone. These findings suggest that N-acetylcysteine protects ventricular arrhythmias by attenuating reduced connexin43 expression and function via both PKA- and Epac-dependent pathways, which converge through the inactivation of glycogen synthase kinase-3β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号