首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Binding ATP to tryptophanyl-tRNA synthetase (TrpRS) in a catalytically competent configuration for amino acid activation destabilizes the enzyme structure prior to forming the transition state. This conclusion follows from monitoring the titration of TrpRS with ATP by small angle solution X-ray scattering, enzyme activity, and crystal structures. ATP induces a significantly smaller radius of gyration at pH=7 with a transition midpoint at approximately 8mM. A non-reciprocal dependence of Trp and ATP dissociation constants on concentrations of the second substrate show that Trp binding enhances affinity for ATP, while the affinity for Trp falls with the square of the [ATP] over the same concentration range ( approximately 5mM) that induces the more compact conformation. Two distinct TrpRS:ATP structures have been solved, a high-affinity complex grown with 1mM ATP and a low-affinity complex grown at 10mM ATP. The former is isomorphous with unliganded TrpRS and the Trp complex from monoclinic crystals. Reacting groups of the two individually-bound substrates are separated by 6.7A. Although it lacks tryptophan, the low-affinity complex has a closed conformation similar to that observed in the presence of both ATP and Trp analogs such as indolmycin, and resembles a complex previously postulated to form in the closely-related TyrRS upon induced-fit active-site assembly, just prior to catalysis. Titration of TrpRS with ATP therefore successively produces structurally distinct high- and low-affinity ATP-bound states. The higher quality X-ray data for the closed ATP complex (2.2A) provide new structural details likely related to catalysis, including an extension of the KMSKS loop that engages the second lysine and serine residues, K195 and S196, with the alpha and gamma-phosphates; interactions of the K111 side-chain with the gamma-phosphate; and a water molecule bridging the consensus sequence residue T15 to the beta-phosphate. Induced-fit therefore strengthens active-site interactions with ATP, substantially intensifying the interaction of the KMSKS loop with the leaving PP(i) group. Formation of this conformation in the absence of a Trp analog implies that ATP is a key allosteric effector for TrpRS. The paradoxical requirement for high [ATP] implies that Gibbs binding free energy is stored in an unfavorable protein conformation and can then be recovered for useful purposes, including catalysis in the case of TrpRS.  相似文献   

3.
RecQ helicases are critical for maintaining genome integrity in organisms ranging from bacteria to humans by participating in a complex network of DNA metabolic pathways. Their diverse cellular functions require specialization and coordination of multiple protein domains that integrate catalytic functions with DNA–protein and protein–protein interactions. The RecQ helicase from Deinococcus radiodurans (DrRecQ) is unusual among RecQ family members in that it has evolved to utilize three ‘Helicase and RNaseD C-terminal’ (HRDC) domains to regulate its activity. In this report, we describe the high-resolution structure of the C-terminal-most HRDC domain of DrRecQ. The structure reveals unusual electrostatic surface features that distinguish it from other HRDC domains. Mutation of individual residues in these regions affects the DNA binding affinity of DrRecQ and its ability to unwind a partial duplex DNA substrate. Taken together, the results suggest the unusual electrostatic surface features of the DrRecQ HRDC domain may be important for inter-domain interactions that regulate structure-specific DNA binding and help direct DrRecQ to specific recombination/repair sites.  相似文献   

4.
Karyological and morphological analysis of the wild type MDBK cell line (spontaneously transformed bovine kidney cells) was undertaken. The results were compared with the same data obtained with resistant lines derived from the wild type line after prolonged cultivation with increasing quantities of tryptophanol and tryptamine, competitive analogues of tryptophan. Tetraploids are much more abundant in the resistant lines than in the initial one. In tryptamine-resistant cells a large marker acrocentric chromosome is duplicated in 96% of cells and elongated, due to appearance of an additional segment. In the population of resistant cells bi- and multinuclear cells are abundant as well as giant cells; the nuclei are enlarged and the number of nucleoli is increased. A hypothesis is proposed that resistance to tryptophan analogues is associated with amplification of tryptophanyl-tRNA synthetase gene.  相似文献   

5.
6.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

7.
RecA protein is considered to be the most important participant in the radiation resistance of Deinococcus radiodurans. However, it is still unclear how RecA contributes to the resistance. In this study, we identified a new recA mutation (recA424) in the DNA-repair deficient mutant strain KI696, the phenotype of which is remarkably different from mutant strain rec30 carrying recA670. The properties of the gene products from the recA mutants were compared. recA424 could not complement the deficiency in Escherichia coli RecA, as found for recA670. In vitro, neither RecA424 nor RecA670 could promote DNA strand exchange under conditions in which wild-type RecA promoted the reaction, indicating that both RecA424 and Rec670 are defective in recombination activity. RecA424 promoted the autocleavage reaction of LexA in vitro, whereas RecA670 did not. The intracellular LexA level in KI696 was decreased following gamma-irradiation. However, the LexA level in strain rec30 was constant irrespective of irradiation. These results indicate that RecA424 retains co-protease activity, whereas RecA670 does not. While strain rec30 is extremely radiation sensitive, strain KI696 is only slightly sensitive. Together, these observations suggest that the co-protease activity rather than the recombination activity of RecA contributes to radiation resistance in D. radiodurans.  相似文献   

8.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.  相似文献   

10.
Bacteriophytochrome from Deinococcus radiodurans (DrBphP) is a plant phytochrome homolog. To investigate the interaction of chromophore and protein structure, we purified recombinant DrBphP and performed biochemical analyses. Differences of apo- and holo-protein in electrophoretic properties in native gels and their susceptibility to trypsin indicate changes in both the conformation and surface topography of this protein as a result of chromophore assembly. Furthermore, proteolysis to Pr and Pfr conformers displayed distinctive cleavage patterns with a noticeable Pr-specific tryptic fragment. Of interest, a prolonged tryptic digestion showed a more severe impact upon the Pfr form. Most importantly, when we assessed the extent of dark reversion to evaluate the role of the cleaved part, a rapidly accelerated reversion was observed upon cleavage at residues 329-505 corresponding to the PHY domain. Our data thus show that the PHY domain is necessary for the Pfr stabilization and spectral integrity of DrBphP.  相似文献   

11.
An open reading frame (draSO) encoding a putative sulfite oxidase (SO) was identified in the sequence of chromosome II of Deinococcus radiodurans; the predicted gene product showed significant amino acid sequence homology to several bacterial and eukaryotic SOs, such as the biochemically and structurally characterized enzyme from Arabidopsis thaliana. Cloning of the Deinococcus SO gene was performed by PCR amplification from the bacterial genomic DNA, and heterologous gene expression of a histidine-tagged polypeptide was obtained in a molybdopterin-overproducing strain of Escherichia coli. The recombinant protein was purified to homogeneity by nickel chelating affinity chromatography, and its main kinetic and chemical physical parameters were determined. Northern blot and enzyme activity analyses indicated that draSO gene expression is constitutive in D. radiodurans and that there is no increase upon exposure to thiosulfate and/or molybdenum(II).  相似文献   

12.
A complex of gamma, epsilon, and c subunits rotates in ATP synthase (FoF(1)) coupled with proton transport. A gold bead connected to the gamma subunit of the Escherichia coli F(1) sector exhibited stochastic rotation, confirming a previous study (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). A similar approach was taken for mutations in the beta subunit key region; consistent with its bulk phase ATPase activities, F(1) with the Ser-174 to Phe substitution (betaS174F) exhibited a slower single revolution time (time required for 360 degree revolution) and paused almost 10 times longer than the wild type at one of the three 120 degrees positions during the stepped revolution. The pause positions were probably not at the "ATP waiting" dwell but at the "ATP hydrolysis/product release" dwell, since the ATP concentration used for the assay was approximately 30-fold higher than the K(m) value for ATP. A betaGly-149 to Ala substitution in the phosphate binding P-loop suppressed the defect of betaS174F. The revertant (betaG149A/betaS174F) exhibited similar rotation to the wild type, except that it showed long pauses less frequently. Essentially the same results were obtained with the Ser-174 to Leu substitution and the corresponding revertant betaG149A/betaS174L. These results indicate that the domain between beta-sheet 4 (betaSer-174) and P-loop (betaGly-149) is important to drive rotation.  相似文献   

13.
14.
Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the ‘Min’ proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.  相似文献   

15.
Calmodulin (CaM) is the primary transducer of calcium fluxes in eukaryotic cells. Its two domains allosterically regulate myriad target proteins through calcium-linked association and conformational change. Many of these proteins have a basic amphipathic alpha-helix (BAA) motif that binds one or both CaM domains. Previously, we demonstrated domain-specific binding of melittin, a model BAA peptide, to Paramecium CaM (PCaM): C-domain mutations altered the interaction with melittin, whereas N-domain mutations had no discernable effect. Here, we report on the use of fluorescence and NMR spectroscopy to measure the domain-specific association of melittin with calcium-saturated ((Ca(2+))(4)-PCaM) or calcium-depleted (apo) PCaM, which has enabled us to determine the free energies of calcium binding to the PCaM-melittin complex, and to estimate interdomain cooperativity. Under apo conditions, melittin associated with each PCaM domain fragment (PCaM(1-80) and PCaM(76-148)), as well as with the C-domain of full-length PCaM (PCaM(1-148)). In the presence of calcium, all of these interactions were again observed, in addition to which an association with the N-domain of (Ca(2+))(4)-PCaM(1-148) occurred. This new association was made possible by the fact that melittin changed the calcium-binding preferences for the domains from sequential (C > N) to concomitant, decreasing the median ligand activity of calcium toward the N-domain 10-fold more than that observed for the C-domain. This selectivity may be explained by a free energy of cooperativity of -3 kcal/mol between the N- and C-domains. This study demonstrates multiple domain-selective differences in the interactions between melittin and PCaM. Our findings support a model that may apply more generally to ion channels that associate with the C-domain of CaM under low (resting) calcium conditions, but rearrange when calcium binding triggers an association of the N- domain with the channel.  相似文献   

16.
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATPγS, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-α-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.  相似文献   

17.
Phosphoribosyl pyrophosphate (PRPP) synthetase catalyzes the transfer of the pyrophosphate group from ATP to ribose-5-phosphate (R5P) yielding PRPP and AMP. PRPP is an essential metabolite that plays a central role in cellular metabolism. The enzyme from a thermophilic archaeon Thermoplasma volcanium (Tv) was expressed in Escherichia coli, crystallized, and its X-ray molecular structure was determined in a complex with its substrate R5P and with substrate analogs β,γ-methylene ATP and ADP in two monoclinic crystal forms, P21. The β,γ-methylene ATP- and the ADP-bound binary structures were determined from crystals grown from ammonium sulfate solutions; these crystals diffracted to 1.8 Å and 1.5 Å resolutions, respectively. Crystals of the ternary complex with ADP-Mg2+ and R5P were grown from a polyethylene glycol solution in the absence of sulfate ions, and they diffracted to 1.8 Å resolution; the unit cell is approximately double the size of the unit cell of the crystals grown in the presence of sulfate. The Tv PRPP synthetase adopts two conformations, open and closed, at different stages in the catalytic cycle. The binding of substrates, R5P and ATP, occurs with PRPP synthetase in the open conformation, whereas catalysis presumably takes place with PRPP synthetase in the closed conformation. The Tv PRPP synthetase forms a biological dimer in contrast to the tetrameric or hexameric quaternary structures of the Methanocaldococcus jannaschii and Bacillus subtilis PRPP synthetases, respectively.  相似文献   

18.
19.
Cuticle-degrading serine protease Ver112, which derived from a nematophagous fungus Lecanicillium psalliotae, has been exhibited to have high cuticle-degrading and nematicidal activities. We have performed molecular dynamics (MD) simulation based on the crystal structure of Ver112 to investigate its dynamic properties and large-scale concerted motions. The results indicate that the structural core of Ver112 shows a small fluctuation amplitude, whereas the substrate binding sites, and the regions close to and opposite the substrate binding sites experience significant conformational fluctuations. The large concerted motions obtained from essential dynamics (ED) analysis of MD trajectory can lead to open or close of the substrate binding sites, which are proposed to be linked to the functional properties of Ver112, such as substrate binding, orientation, catalytic, and release. The significant motion in the loop regions that is located opposite the binding sites are considered to play an important role in modulating the dynamics of the substrate binding sites. Furthermore, the bottom of free energy landscape (FEL) of Ver112 are rugged, which is mainly caused by the fluctuations of substrate binding regions and loops located opposite the binding site. In addition, the mechanism underlying the high flexibility and catalytic activity of Ver112 was also discussed. Our simulation study complements the biochemical and structural studies, and provides insight into the dynamics-function relationship of cuticle-degrading serine protease Ver112.  相似文献   

20.
We have studied protein-ligand interactions by molecular dynamics simulations using software designed to exploit parallel computing architectures. The trajectories were analyzed to extract the essential motions and to estimate the individual contributions of fragments of the ligand to overall binding enthalpy. Two forms of the bound ligand are compared, one with the termini blocked by covalent derivatization, and one in the underivatized, zwitterionic form. The ends of the peptide tend to bind more loosely in the capped form. We can observe significant motions in the bound ligand and distinguish between motions of the peptide backbone and of the side chains. This could be useful in designing ligands, which fit optimally to the binding protein. We show that it is possible to determine the different contributions of each residue in a peptide to the enthalpy of binding. Proline is a major net contributor to binding enthalpy, in keeping with the known propensity for this family of proteins to bind proline-rich peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号