首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Do abiotic constraints maintain monospecific woodlands of Juniperus thurifera? What is the role of biotic (livestock) versus abiotic (climate) drivers in the recruitment and growth of the different tree species? Location: Cabrejas range, Soria, north‐central Spain, 1200 m altitude. Methods: Stand history was reconstructed using dendro‐ecology and spatial pattern analysis, combined with historical data of livestock abundances and climatic records. Results: J. thurifera establishment occurred in two distinct pulses, with a tree component establishing in the late 1800s to early 1900s. Quercus ilex and Pinus sylvestris establishment was evident only from the late 1970s onward. Recruitment events were related to reductions in livestock browsing. J. thurifera spatial structure was clumped and Q. ilex showed a short‐scale aggregation to J. thurifera trees and saplings. Radial growth trends of J. thurifera saplings, Q. ilex and P. sylvestris were negatively related to livestock density. Summer drought limited the radial growth of all the study species, and P. sylvestris and Q. ilex grew faster than J. thurifera even after considering an age effect. Conclusions: The differences in radial growth patterns and recruitment pulses between species indicate that livestock browsing and not abiotic factors is the main factor controlling plant succession and structural development. In this process, J. thurifera acts as a nurse plant, facilitating the establishment of other tree species. Under the current low pressure from herbivores, formerly pure J. thurifera woodlands will change towards dense stands of mixed species composition.  相似文献   

2.
Areas with ancient clearance cairns have been studied in Hamneda, Småland Uplands, southern Sweden, by archaeological and palaeoecological methods. Based on numerous radiocarbon dates and stratigraphical analyses, the local introduction of stone clearance is dated to the first century A.D. The clearance cairns reflect a system of semi-mobile cultivation that lasted until c. A.D. 900. Pollen and macrofossil analyses provide information on cereal growing and pastures in these clearance cairn areas, while charcoal analyses reveal details on the agrarian expansion dynamics and the use of fire in vegetation clearance. In the expansion phase, Quercus (oak) woodlands were cleared and transformed to open pastures and arable land, partly by the use of fire. A secondary succession of Betula (birch) and Corylus (hazel) was dealt with by fire clearances to keep pastures open and to prepare new arable plots. In the long run, Betula in particular was favoured by the land-use system. The mobility of the cultivation system is discussed together with the causes behind the introduction of stone clearance. A possible causal relationship with the introduction of hay mowing is also discussed.  相似文献   

3.
Eberbach  P. L. 《Plant and Soil》2003,257(2):357-369
Water use by the native vegetation that existed in southern Australia prior to European settlement was largely in balance with rainfall. European settlers altered the landscape by clearing land to grow agricultural crops and pastures, and with the introduction of livestock to graze the partly cleared, native ecosystems. The aim of this review is to contrast the hydrology of grazed, partly cleared ecosystems, intact indigenous ecosystems, and entirely cleared agricultural systems in the intensive land-use zone (350–1000 mm annual rainfall zone) of southern Australia. Since European settlement, the areas of forests and woodlands in the Murray–Darling Basin have declined by approximately 64% to make way for agricultural enterprises. Modern-day vegetation surveys estimate between 52 and 58% of the intensive land-use zone of the Murray–Darling Basin has been entirely cleared, while about 40% is in the partly cleared state (disturbed ecosystems with canopy cover exceeding 5%). The replacement of native vegetation by agricultural crops and pastures has disturbed the water cycle that existed prior to European settlement, and has markedly elevated the amount of water leaking beyond the root zone of introduced species, and contributing to groundwater systems. Estimates of annual leakage beneath the root zone of annual crops range from 0 to 63 mm per annum; however, no estimates of leakage for partly cleared woodlands exist. Yet, because the groundwater beneath partly cleared woodlands rises considerably more slowly than under entirely cleared landscapes, it is likely that less water leaks beneath the roots of grazed woody ecosystem. However, aging of these systems by livestock grazing will reduce the numbers of woody individuals and will impact on groundwater recharge.  相似文献   

4.
The strength of competitive and facilitative interactions in plant communities is expected to change along resource gradients. Contrasting theoretical models predict that with increasing abiotic stress, facilitative effects are higher, lower, or similar than those found under more productive conditions. While these predictions have been tested in stressful environments such as arid and alpine ecosystems, they have hardly been tested for more productive African woodlands. We experimentally assessed the strength of tree seedling facilitation by nurse trees in mesic and dry woodlands in Benin, West Africa. We planted seedlings of the drought‐sensitive Afzelia africana and the drought‐tolerant Khaya senegalensis under three microsite conditions (closed woodland, woodland gap, and open fields). Seedling survival was greater within woodlands compared with open fields in both the mesic and dry woodlands. The relative benefits in seedling survival were larger at the dry site, especially for the drought‐sensitive species. Nevertheless, plant interactions became neutral or negative during the dry season in the drier woodland, indicating that the net positive effects may be lost under very stressful abiotic conditions. We conclude that facilitation also occurs in the relatively more productive conditions of African woodlands. Our results underscore the role of environmental variation in space and time, and the stress tolerance of species, in explaining competitive and facilitative interactions within plant communities. Abstract in French is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

5.
Questions: Can gender of nurse plants affect regeneration patterns and spatial population structure? Is there a seed‐seedling conflict in the regeneration process? What factors are responsible for the clumped spatial population structure observed for adult trees? Location: Mediterranean cold semi‐arid high mountains in Spain. Methods: The spatial pattern of adult Juniperus thurifera trees was studied by means of Ripley's K‐analysis. χ2 analyses were used to test for natural seedling frequency in each of three main microhabitats: (1) under female and (2) male tree canopies and (3) in open interspaces. The observed pattern was explained experimentally by studying seed and seedling survival for two years. Survival probabilities were calculated across life stages for each of three main microhabitats. Results: Adult J. thurifera trees were aggregated in space. Most seedlings were found underneath female J. thurifera trees. Experimental studies demonstrated that from seed dispersal to seedling survival all life stages showed the same positive or negative trend within a given microhabitat, indicating stage coupling and no seed‐seedling conflicts. Attraction of frugivo‐rous birds by reproductive female junipers and improvement of environmental conditions beneath tree canopies were the main factors responsible for the variation in seedling density among microhabitats; highest underneath female trees and lowest in open interspaces. Conclusions: In dioecious species, the gender of nurse plants can significantly determine the spatial population structure. In J. thurifera forests, facilitation beneath female trees occurs among all life stages without any sign of seed‐seedling conflict. The most critical factors shaping the spatial population structure were directed seed dispersal and environmental amelioration beneath female conspecific trees.  相似文献   

6.
不同草地所有权下家庭牧场生产效率比较分析   总被引:2,自引:0,他引:2  
选取了甘肃祁连山区肃南县春夏秋冬四季草场均已分配到户的15个牧户和天祝县夏秋草场或四季草场均为公共草场的15个农牧户,从草地生态系统生产功能的角度,通过野外调查、DEA模型(数据包络分析模型)分析,比较两地牧民草场面积,冷季补饲,牧工费,家庭劳动力等投入,出售活畜、毛、奶等畜产品的产出等项目,探讨不同的草地所有权下牧民生产效率平均值、效率分布的差异性以及影响生产效率的因素。结果显示:天祝县农牧民生产效率的平均值大于肃南县(P0.05),且天祝县牧户生产效率的分布优于肃南县。进一步分析得出造成牧业生产效率低的原因从大到小顺序为:补饲投入、能繁母畜、草场面积和劳动力投入。验证了草地所有权会影响家庭牧场生产效率的假设,并且就生产效率角度来说,不完全承包到户的草地所有权优于完全承包到户的。  相似文献   

7.
The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie‐forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122–126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.  相似文献   

8.
Changes in agriculture (intensification or abandonment) have resulted in a dramatical reduction of semi-natural grasslands in Central Europe in the 20th century. Recent management actions aim to restore overgrown and formerly fertilized nutrient-poor grasslands. Former land use is known to influence the present-day vegetation. Similar information is not available for animals with low dispersal ability. We investigated the effect of pasture management history over a period of 55 years on the present-day land snail diversity in 20 dry, nutrient-poor grasslands in the Swiss Jura mountains. Snails were recorded in pastures left unmanaged for 10–40 years but recently cleared from overgrowing shrubs, in pastures fertilized for 15–25 years but recently managed extensively (no fertilizer), and in pastures which have been extensively managed throughout (=control). Past shrub cover had a negative effect on the total number of snail species and the number of red-listed individuals. Former use of fertilizer reduced red-listed species and individuals and changed the snail community. Three species (Vitrina pellucida, Helicella itala and Abida secale) were found less frequently in formerly fertilized pastures than in extensive pastures. Our results show that changes in pasture use for a period of 10–40 years caused long-term alterations of the land snail fauna.  相似文献   

9.
Aim We determined the present and past distribution, and the abundance, of Boswellia papyrifera in Eritrea, and the environmental and land‐use factors determining its distribution limits. Location Eritrea, in the Horn of Africa. Methods In 1997 a Boswellia field survey was conducted in 113 village areas covering four administrative regions. Species occurrence was related to rainfall, air temperature and length of growing period. Additionally, the relationship between the abundance of Boswellia trees and selected physical and chemical soil factors, topography and land‐use types was determined for five study areas (with a total of 144 plots) situated along an altitude gradient of 800–2000 m a.s.l. Results The geographical distribution of B. papyrifera was limited to the south‐western and southern parts of the country between 800 and 1850 m altitude receiving a mean annual rainfall of 375–700 mm, with a growing period of 45–100 days. Species abundance was affected by, in order of importance: altitude, land‐use intensity and soil organic matter. Most trees were found in hilly areas; tree density increased from the foot slope to the hill summit; no trees occurred in valleys. Land‐use intensity, especially agriculture, fallow and grazed areas, had a profound negative effect on tree abundance. Natural regeneration of the species was promoted in areas where grazing by livestock was not allowed or regulated. Main conclusions The distribution of B. papyrifera in Eritrea has decreased during past decades, mainly due to an increasing human population, resulting in the conversion of woodlands into agricultural fields and increasing livestock pressure hindering natural regeneration. Consequently, Boswellia trees are found mainly in hilly areas on steep slopes with shallow soils of low fertility. The species appears to be able to adapt to these harsh growing conditions: in adjacent countries it was also found in comparable growth habitats.  相似文献   

10.
Since the middle of the 19th century, the area covered by forests in France has doubled. These new forests grow on previous agricultural lands. We have studied the influence of this agricultural history on the 15N abundance of present-day forests planted on farmlands in the Vosges mountains (north-eastern France) between 1898 and 1930. Different types of land use were identified from old cadastres (1814–1836) of 16 farms. Ancient forests adjacent to farmlands were used as controls. Former pastures, meadows, croplands, gardens and ancient forests were compared for soil δ15N (fraction <50 μm and total soil), C/N, P and N content and fern (Dryopteris carthusiana) δ15N. The mean δ15N of soil increased in the order ancient forests (+0.0‰)<pastures (+1.4‰)<croplands (+1.6‰)<meadows (+2.5‰)<gardens (+3.8‰). This increase in soil δ15N with the intensity of former land use was related to the former input of 15N-enriched manure, and to an activation of soil nitrification leading to 15N-depleted nitrate export on previously manured parcels. Fern δ15N increased in the same order as soil δ15N in relation to past land use. The mean δ15N of fern in ancient forests (–4.4‰) and former pastures (–3.4‰) was 5‰ lower than soil δ15N and the two variables were strongly correlated. The δ15N of fern in formerly manured parcels varied little (cropland: –2.7‰, meadows: –2.6‰ and gardens: –2.2‰) and independently of soil δ15N, suggesting that the soil sources of fern N differed between unmanured and manured parcels. Understorey plant δ15N and soil δ15N appear to be excellent tracers of previous land use in forests, and could be used in historical studies. The persistence of high isotopic ratios in previously manured parcels, almost a century after afforestation, suggests a long-term influence of former land use on the N cycle in forest soils. Received: 22 January 1999 / Accepted: 22 July 1999  相似文献   

11.
Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site‐level characteristics, landscape factors, and land‐use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site‐level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red‐cockaded woodpecker in the southeastern United States. Land‐use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post‐agricultural sites; however, understory species composition was affected by historical connectivity, but only for post‐agricultural sites. The influences of management and restoration activities were only apparent once land‐use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post‐agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site‐level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land‐use history, and underscore the importance of considering land‐use history and landscape effects during restoration.  相似文献   

12.
Traditionally managed mountain grasslands in the Alps are species‐rich ecosystems that developed during centuries of livestock grazing. However, changes in land use including fertilisation of well accessible pastures and gradual abandonment of remote sites are increasingly threatening this diversity. In five regions of the Swiss and French Alps we assessed the relationship between land use, soil resource availability, cover of the unpalatable species Veratrum album, species richness and vegetation composition of mountain grasslands across four spatial scales ranging from 1 to 1000 m2. Mean species richness and the increase in the number of species with increasing area were lower in intensively grazed, fertilised pastures than in traditional pastures or in abandoned pastures. Species composition of abandoned pastures differed from that of the other management types. Plant species richness was influenced by different factors at different spatial scales. At the 1 m2 scale, plant species richness was negatively related to soil nitrate and influenced by the cover of V. album, depending on land use: species richness and cover of V. album were negatively correlated in abandoned pastures, but positively correlated in fertilised grasslands. At the 1000 m2 scale, a negative effect of fertilization on richness was evident. These results indicate that at small scales species richness in mountain grasslands is determined by competition for light, which should be more important if nutrient availability is high, and by positive and negative interactions with unpalatable plants. In contrast, species richness at the large scale appears to be mainly influenced by land use. This result emphasizes the importance of studying such inter‐relationships at multiple scales. Our study further suggests that the maintenance of the traditional land use scheme is crucial for the conservation of plant species richness of mountain pastures as both intensification and abandonment changed species composition and reduced plant species diversity.  相似文献   

13.
Land abandonment is one of the most powerful global change drivers in developed countries where recent rural exodus has been the norm. Abandonment of traditional land use practices has permitted the colonization of these areas by shrub and tree species. For fleshy fruited species the colonization of new areas is determined by the dispersal assemblage composition and abundance. In this study we showed how the relative contribution to the dispersal process by each animal species is modulated by the environmental heterogeneity and ecosystem structure. This complex interaction caused differential patterns on the seed dispersal in both, landscape patches in which the process of colonization is acting nowadays and mature woodlands of Juniperus thurifera, a relict tree distributed in the western Mediterranean Basin. Thrushes (Turdus spp) and carnivores (red fox and stone marten) dispersed a high amount of seeds while rabbits and sheeps only a tiny fraction. Thrushes dispersed a significant amount of seeds in new colonization areas, however they were limited by the presence of high perches with big crop size. While carnivores dispersed seeds to all studied habitats, even in those patches where no trees of J. thurifera were present, turning out to be critical for primary colonization. The presence of Pinus and Quercus was related to a reduced consumption of J. thurifera seeds while the presence of fleshy fruited shrubs was related with higher content of J. thurifera seeds in dispersers’ faeces. Therefore environmental heterogeneity and ecosystem structure had a great influence on dispersers feeding behaviour, and should be considered in order to accurately describe the role of seed dispersal in ecological process, such as regeneration and colonization. J. thurifera expansion is not seed limited thanks to its diverse dispersal community, hence the conservation of all dispersers in an ecosystem enhance ecosystems services and resilience.  相似文献   

14.
  • Changes in land‐use patterns are a major driver of global environmental change. Cessation of traditional land‐use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind‐pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators.
  • We assessed the relative importance of forest composition on cone production, seed development and pre‐dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre‐dispersal arthropods were tested using mixed models.
  • Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non‐host plants reduces damage rates. However, the response of each arthropod to forest composition was species‐specific and the relative rates of cone damage varied depending on individual tree crops.
  • Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction.
  相似文献   

15.
《Journal of bryology》2013,35(1):23-31
Abstract

The forests of Juniperus thurifera are peculiar ecosystems that typically grow on mountains and highplateaux of the western Mediterranean basin with dry and continental climates. Some previous surveys suggested that these forests house a rather distinctive epiphytic bryophyte flora. Epiphytic bryophyte communities were systematically sampled in 19 representative juniper forests, for the first time spanning all the distribution area of this conifer. The flora consists of 44 species (32 acrocarpous mosses, 10 pleurocarpous mosses and 2 liverworts). Orthotrichum species are the most frequent and abundant in most of the sampled localities, including some uncommon taxa such as Orthotrichum vittii which shows a clear association with J. thurifera. Epiphytic bryophyte communities on this species were highly homogeneous, although they can be arranged into different groups in response to environmental conditions. Typically, the epiphytic communities of the Mediterranean juniper forests comprise a distinct combination of xerophytic taxa that enhances the interest of these ecosystems and provides new fields for their research and conservation.  相似文献   

16.
The concept that vegetation structure (and faunal habitat) develops predictably with time since fire has been central to understanding the relationship between fire and fauna. However, because plants regenerate after fire in different ways (e.g. resprouting from above‐ground stems vs. underground lignotubers), use of simple categories based on time since fire might not adequately represent post‐fire habitat development in all ecosystems. We tested the hypothesis that the post‐fire development of faunal habitat structure differs between ecosystems, depending on fire regeneration traits of the dominant canopy trees. We measured 12 habitat components at sites in foothill forests (n = 38), heathy woodlands (n = 38) and mallee woodlands (n = 98) in Victoria, Australia, and used generalised additive models to predict changes in each variable with time since fire. A greater percentage of faunal habitat variables responded significantly to time since fire in mallee woodlands, where fires typically are stand‐replacing, than in foothill forests and heathy woodlands, where canopy tree stems generally persist through fire. In the ecosystem with the highest proportion of epicormic resprouters (foothill forests), only ground cover and understorey vegetation responded significantly to time since fire, compared with all but one variable in the ecosystem dominated by basal resprouters (mallee woodlands). These differences between ecosystems in the post‐fire development of key habitat components suggest there may also be fundamental differences in the role of fire in shaping the distribution of fauna. If so, this challenges the way in which many fire‐prone ecosystems currently are categorised and managed, especially the level of dependence on time since fire and other temporal surrogates such as age‐classes and successional states. Where time since fire is a poor surrogate for habitat structural development, additional complexity (e.g. fire severity, topography and prior land‐use history) could better capture processes that determine faunal occurrence in fire‐prone ecosystems.  相似文献   

17.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

18.
Woodlands dominated by Eucalyptus spp. in temperate southeastern and southwestern Australia have been extensively cleared for agriculture and are often badly degraded by livestock grazing. This has resulted in the loss of biodiversity and widespread land degradation. The continuing decline of these woodlands has become a concern for the conservation of biodiversity, and there is a growing interest among farmers, land managers, and researchers in developing techniques for restoring them. Currently few scientific guidelines exist for undertaking woodland restoration programs. We use a state and transition model to develop hypotheses on restoration strategies for salmon gum (Eucalyptus salmonophloia) woodlands. We consider that this approach provides a suitable framework for organizing knowledge and identifying areas where further information is needed, and hence provides a useful starting point for a restoration program. The model has the potential to provide a tool for land managers with which they can assess the action and effort needed to undertake woodland restoration in agricultural landscapes.  相似文献   

19.
Species distribution models (SDMs) are increasingly used to predict species ranges and their shifts under future scenarios of global environmental change (GEC). SDMs are thus incorporating key drivers of GEC (e.g. climate, land use) to improve predictions of species’ habitat suitability (i.e. as an indicator of species occurrence). Yet, most SDMs incorporating land use only consider dominant land cover types, largely ignoring other key aspects of land use such as land management intensity and livestock. We developed SDMs including main land use components (i.e. land cover, livestock and its management intensity) to assess their relative importance in shaping habitat suitability for the Egyptian vulture, an endangered raptor linked to livestock presence. We modelled current and future (2020 and 2050) habitat suitability for this vulture using an organism-centred approach. This allowed us to account for basic species’ habitat needs (i.e. nesting cliff) while gaining insight into our variables of interest (i.e. livestock and land cover). Once nest-site requirements were fulfilled, land use variables (i.e. openland and sheep and goat density) were the main factors determining species’ habitat suitability. Current suitable area could decrease by up to 6.81% by 2050 under scenarios with rapid economic growth but no focus on environmental conservation and rural development. Local solutions to environmental sustainability and rural development could double current habitat suitability by 2050. Land use is expected to play a key role in determining Egyptian vulture's distribution through land cover change but also through changes in livestock management (i.e. species and stocking density). Change in stocking densities (sheep and goats/km2) becomes thus an indicator of habitat suitability for this vulture in our study area. Abandonment of agro-pastoral practises (i.e. below ∼15–20 sheep and goats/km2) will negatively influence the species distribution. Nonetheless, livestock densities above these values will not further increase habitat suitability. Given the widespread impacts of livestock on ecosystems, the role of livestock and its management intensity in SDMs for other (non-livestock-related) species should be further explored.  相似文献   

20.
Mediterranean ecosystems are inherently patchy, challenging habitat-use behavior. Certain mammalian carnivores take advantage of this patchiness by a strategy of habitat complementation/supplementation, which is invariant to the scale of analysis. To test if the same behavior is adopted by the stone marten, we used a combined data set of capture and radio-tracking data at three scales of analysis (1-m, 25-m, and 452-m radius plots). We used compositional analysis to test if there were sex-specific differences in foraging and resting habitat use of stone martens and if these patterns were affected by the presence of other mesocarnivores. Our results showed that stone martens are found both in rural and forested landscapes. Foraging and resting activities occurred far from roads in large and complex patches of cork oak woodlands, riparian vegetation, orchards, and pastureland. Use varied with the scale of analysis and the sex. At smaller scales, females use pastures for foraging and orchards for resting, whereas riparian vegetation and sparse cork oak forests influenced this use at larger scales. Males, on the other hand, were more consistent across scales, using riparian areas and dense cork oak woodlands for foraging and pastures for resting. Stone martens shared the same areas with other coexisting mesocarnivores. Stone martens use cork oak woodlands and complement/supplement this use with other land cover types. The consistent use of cork oak woodlands across scales emphasizes the importance of this land cover to the preservation of functional Mediterranean ecosystems in southern Portugal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号