首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each myosin molecule contains two heavy chains and a total of four low-molecular weight light chain subunits, two "essential" and two "regulatory" light chains (RLCs). Although the roles of myosin light chains in vertebrate striated muscle are poorly understood at present, recent studies on the RLC have suggested that it has a modulatory role with respect to Ca2+ sensitivity of tension and the rate of tension development, effects that may be mediated by Ca2+ binding to the RLC. To examine possible roles of the RLC Ca2+/Mg2+ binding site in tension development by skeletal muscle, we replaced endogenous RLC in rabbit skinned psoas fibers with an avian mutant RLC (D47A) having much reduced affinity for divalent cations. After replacement of up to 80% of the endogenous RLC with D47A RLC, maximum tension (at pCa 4.5) was significantly reduced compared with preexchange tension, and the amount of decrease was directly related to the extent of D47A exchange. Fiber stiffness changed in proportion to tension, indicating that the decrease in tension was due to a decrease in the number of tension-generating cross-bridges. Decreases in both tension and stiffness were substantially, although incompletely, reversed after reexchange of native RLC for D47A. RLC exchange was also performed using a wild-type RLC. Although a small decrease in tension was observed after wild-type RLC exchange, the decrease was not proportional to the extent of RLC exchange and was not reversed by reexchange of the native RLC. D47A exchange also decreased the Ca2+ sensitivity of tension and reduced the apparent cooperativity of tension development. The results suggest that divalent cation binding to myosin RLC plays an important role in tension generation in skeletal muscle fibers.  相似文献   

2.
We examined the kinetic properties of rabbit skinned skeletal muscle fibers in which the endogenous myosin regulatory light chain (RLC) was partially replaced with a mutant RLC (D47A) containing a point mutation within the Ca2+/Mg2+ binding site that severely reduced its affinity for divalent cations. We found that when approximately 50% of the endogenous RLC was replaced by the mutant, maximum tension declined to approximately 60% of control and the rate constant of active tension redevelopment (ktr) after mechanical disruption of cross-bridges was reduced to approximately 70% of control. This reduction in ktr was not an indirect effect on kinetics due to a reduced number of strongly bound myosin heads, because when the strongly binding cross-bridge analog N-ethylmaleimide-modified myosin subfragment1 (NEM-S1) was added to the fibers, there was no effect upon maximum ktr. Fiber stiffness declined after D47A exchange in a manner indicative of a decrease in the number of strongly bound cross-bridges, suggesting that the force per cross-bridge was not significantly affected by the presence of D47A RLC. In contrast to the effects on ktr, the rate of tension relaxation in steadily activated fibers after flash photolysis of the Ca2+ chelator diazo-2 increased by nearly twofold after D47A exchange. We conclude that the incorporation of the nondivalent cation-binding mutant of myosin RLC decreases the proportion of cycling cross-bridges in a force-generating state by decreasing the rate of formation of force-generating bridges and increasing the rate of detachment. These results suggest that divalent cation binding to myosin RLC plays an important role in modulating the kinetics of cross-bridge attachment and detachment.  相似文献   

3.
The role of phosphorylation of the myosin regulatory light chains (RLC) is well established in smooth muscle contraction, but in striated (skeletal and cardiac) muscle its role is still controversial. We have studied the effects of RLC phosphorylation in reconstituted myosin and in skinned skeletal muscle fibers where Ca2+ sensitivity and the kinetics of steady-state force development were measured. Skeletal muscle myosin reconstituted with phosphorylated RLC produced a much higher Ca2+ sensitivity of thin filament-regulated ATPase activity than nonphosphorylated RLC (change in -log of the Ca2+ concentration producing half-maximal activation = approximately 0.25). The same was true for the Ca2+ sensitivity of force in skinned skeletal muscle fibers, which increased on reconstitution of the fibers with the phosphorylated RLC. In addition, we have shown that the level of endogenous RLC phosphorylation is a crucial determinant of the Ca2+ sensitivity of force development. Studies of the effects of RLC phosphorylation on the kinetics of force activation with the caged Ca2+, DM-nitrophen, showed a slight increase in the rates of force development with low statistical significance. However, an increase from 69 to 84% of the initial steady-state force was observed when nonphosphorylated RLC-reconstituted fibers were subsequently phosphorylated with exogenous myosin light chain kinase. In conclusion, our results suggest that, although Ca2+ binding to the troponin-tropomyosin complex is the primary regulator of skeletal muscle contraction, RLC play an important modulatory role in this process.  相似文献   

4.
Kinetic analysis of contracting fast and slow rabbit muscle fibers in the presence of the tension inhibitor 2,3-butanedione monoxime suggests that regulatory light chain (RLC) phosphorylation up-regulates the flux of weakly attached cross-bridges entering the contractile cycle by increasing the actin-catalyzed release of phosphate from myosin. This step appears to be separate from earlier Ca(2+) regulated steps. Small step-stretches of single skinned fibers were used to study the effect of phosphorylation on fiber mechanics. Subdivision of the resultant tension transients into the Huxley-Simmons phases 1, 2(fast), 2(slow), 3, and 4 reveals that phosphorylation reduces the normalized amplitude of the delayed rise in tension (stretch activation response) by decreasing the amplitudes of phase 3 and, to a lesser extent, phase 2(slow). In slow fibers, the RLC P1 isoform phosphorylates at least 4-fold faster than the P2 isoform, complicating the role of RLC phosphorylation in heart and slow muscle. We discuss the functional relevance of the regulation of stretch activation by RLC phosphorylation for cardiac and other oscillating muscles and speculate how the interaction of the two heads of myosin could account for the inverse effect of Ca(2+) levels on isometric tension and rate of force redevelopment (k(TR)).  相似文献   

5.
Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that contribute to tension reduction. The presence of such modifications was investigated in chemically skinned fibers, a procedure that replaces the fatigued cytoplasm from the muscle fiber with a normal medium. Myofibrillar Ca(2+) sensitivity was reduced in slow-twitch muscle (for example, the pCa value corresponding to 50% of maximum tension was 6.23 +/- 0.03 vs. 5.99 + 0.05, P < 0.01, in rested and fatigued fibers) and not modified in fast-twitch muscle. Phosphorylation of the regulatory myosin light chain isoform increased in fast-twitch muscle. The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers. No persistent modifications of SR Ca(2+) release properties were found. These results indicate that persistent modifications of myofibrillar and SR properties contribute to fatigue-induced muscle force decline only in slow fibers. These alterations may be either enhanced or counteracted, in vivo, by the metabolic changes that normally occur during fatigue development.  相似文献   

6.
Myosin regulatory light chain (RLC) phosphorylation in skeletal and cardiac muscles modulates Ca(2+)-dependent troponin regulation of contraction. RLC is phosphorylated by a dedicated Ca(2+)-dependent myosin light chain kinase in fast skeletal muscle, where biochemical properties of RLC kinase and phosphatase converge to provide a biochemical memory for RLC phosphorylation and post-activation potentiation of force development. The recent identification of cardiac-specific myosin light chain kinase necessary for basal RLC phosphorylation and another potential RLC kinase (zipper-interacting protein kinase) provides opportunities for new approaches to study signaling pathways related to the physiological function of RLC phosphorylation and its importance in cardiac muscle disease.  相似文献   

7.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

8.
The regulatory light chains (RLCs) located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation signals. The RLCs belong to a family of calcium binding proteins and are composed of four "EF hand" ancestral calcium binding motifs (numbered I to IV). To determine the role of the first EF hand (EF hand I) in the regulatory process, chimaeric light chains were constructed by protein engineering, by switching this region between smooth muscle and skeletal muscle myosin RLCs. For example, chimaera G(I)S consisted of EF hand I of the smooth muscle (gizzard) RLC and EF hands II to IV of the skeletal muscle RLC, whereas chimaera S(I)G consisted of EF hand I of the skeletal muscle RLC and EF hands II to IV of the smooth muscle RLC. The chimaeric RLCs were expressed in Escherichia coli using the pLcII expression system, and after isolation and purification their regulatory properties were compared with those of wild-type smooth and skeletal muscle myosin RLCs. The chimaeric RLCs bound to the myosin heads in scallop striated muscle myofibrils from which the endogenous RLCs had been removed ("desensitized" myofibrils) with similar affinities to those of the wild-type smooth and skeletal muscle RLCs. Both chimaeric RLCs were able to regulate the actin-activated Mg(2+)-ATPase activity of scallop myosin: G(I)S inhibited the ATPase in the presence and absence of Ca2+, like the wild-type skeletal muscle RLC, while S(I)G inhibited the myosin ATPase in the absence of Ca2+, and this inhibition was relieved on Ca2+ addition, in the same way as the wild-type smooth muscle RLC. Thus the type of regulation that the RLCs confer on the myosin is determined by the source of EF hands II to IV rather than that of EF hand I.  相似文献   

9.
Phosphorylation of the myosin regulatory light chain (RLC) by Ca(2+)-calmodulin-activated myosin light chain kinase (MLCK) is known to be essential for the inotropic function of the heart. In this study, we have examined the effects of MLCK-phosphorylation of transgenic (Tg) mouse cardiac muscle preparations expressing the D166V (aspartic acid to valine)-RLC mutation, identified to cause familial hypertrophic cardiomyopathy with malignant outcomes. Our previous work with Tg-D166V mice demonstrated a large increase in the Ca(2+) sensitivity of contraction, reduced maximal ATPase and force and a decreased level of endogenous RLC phosphorylation. Based on studies demonstrating the beneficial and/or protective effects of cardiac myosin phosphorylation for heart function, we hypothesized that an ex vivo phosphorylation of Tg-D166V cardiac muscle may rescue the detrimental contractile phenotypes observed earlier at the level of single myosin molecules and in Tg-D166V papillary muscle fibres. We showed that MLCK-induced phosphorylation of Tg-D166V cardiac myofibrils and muscle fibres was able to increase the reduced myofibrillar ATPase and reverse an abnormally increased Ca(2+) sensitivity of force to the level observed for Tg-wild-type (WT) muscle. However, in contrast to Tg-WT, which displayed a phosphorylation-induced increase in steady-state force, the maximal tension in Tg-D166V papillary muscle fibres decreased upon phosphorylation. With the exception of force generation data, our results support the notion that RLC phosphorylation works as a rescue mechanism alleviating detrimental functional effects of a disease causing mutation. Further studies are necessary to elucidate the mechanism of this unexpected phosphorylation-induced decrease in maximal tension in Tg-D166V-skinned muscle fibres.  相似文献   

10.
The tension of single glycerinated rabbit skeletal muscle fiber was desensitized to a Ca(2+)-concentration after treatment with an excessive amount of bovine cardiac troponin T and reached a level of about 70% of the maximum tension of the untreated fiber. A SDS-gel electrophoretic examination indicated that troponin C.I.T complex in the fiber was replaced with the added cardiac troponin T. The Ca(2+)-sensitivity of the tension of the troponin T-treated fiber was then recovered by the addition of bovine cardiac troponins I and C. The rabbit skeletal muscle fiber thus hybridized with bovine cardiac troponin C.I.T showed the same cooperativity of Ca(2+)-activation as the cardiac muscle.  相似文献   

11.
It is generally recognized that ventricular myosin regulatory light chains (RLC) are approximately 40% phosphorylated under basal conditions, and there is little change in RLC phosphorylation with agonist stimulation of myocardium or altered stimulation frequency. To establish the functional consequences of basal RLC phosphorylation in the heart, we measured mechanical properties of rat skinned trabeculae in which approximately 7% or approximately 58% of total RLC was phosphorylated. The protocol for achieving approximately 7% phosphorylation of RLC involved isolating trabeculae in the presence of 2,3-butanedione monoxime (BDM) to dephosphorylate RLC from its baseline level. Subsequent phosphorylation to approximately 58% of total was achieved by incubating BDM-treated trabeculae in solution containing smooth muscle myosin light chain kinase, calmodulin, and Ca2+ (i.e., MLCK treatment). After MLCK treatment, Ca2+ sensitivity of force increased by 0.06 pCa units and maximum force increased by 5%. The rate constant of force development (ktr) increased as a function of Ca2+ concentration in the range between pCa 5.8 and pCa 4.5. When expressed versus pCa, the activation dependence of ktr appeared to be unaffected by MLCK treatment; however, when activation was expressed in terms of isometric force-generating capability (as a fraction of maximum), MLCK treatment slowed ktr at submaximal activations. These results suggest that basal phosphorylation of RLC plays a role in setting the kinetics of force development and Ca2+ sensitivity of force in cardiac muscle. Our results also argue that changes in RLC phosphorylation in the range examined here influence actin-myosin interaction kinetics differently in heart muscle than was previously reported for skeletal muscle.  相似文献   

12.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC.  相似文献   

13.
Postnatal development of skeletal muscle occurs through the progressive transformation of diverse biochemical, metabolic, morphological, and functional characteristics from the embryonic to the adult phenotype. Since muscle regeneration recapitulates postnatal development of muscle fiber, it offers an appropriate experimental model to investigate the existing relationships between diverse muscle functions and the expression of key protein isoforms, particularly at the single-fiber level. This study was carried out in regenerating soleus muscle 14 days after injury. At this intermediate stage, the regenerating muscle exhibited a recovery of mass greater than its force generation capacity. The lower specific tension of regenerating muscle suggested intrinsic defective excitation-contraction coupling and/or contractility processes. The presence of developmental isoforms of both the voltage-gated Ca(2+) channel (alpha(1)C) and of ryanodine receptor 3, paralleled by an abnormal caffeine contracture development, confirms the immature excitation-contraction coupling of the regenerating muscle. The defective Ca(2+) handling could also be confirmed by the lower sarcoplasmic reticulum caffeine sensitivity of regenerating single fibers. Also, regenerating single fibers revealed a lower maximal specific tension, which was associated with the residual presence of embryonic myosin heavy chains. Moreover, the fibers showed a reduced Ca(2+) sensitivity of myofibrillar proteins, particularly those simultaneously expressing the slow and fast isoforms of troponin C. The present results indicate that the expression of developmental proteins determines the incomplete functional recovery of regenerating soleus.  相似文献   

14.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

15.
We have studied the effect of myosin P-light chain phosphorylation on the isometric tension generated by skinned fibers from rabbit psoas muscle at 0.6 and 10 microM Ca2+. At the lower Ca2+ concentration, which produced 10-20% of the maximal isometric tension obtained at 10 microM Ca2+, addition of purified myosin light chain resulted in a 50% increase in isometric tension which correlated with an increase in P-light chain phosphorylation from 0.10 to 0.80 mol of phosphate/mol of P-light chain. Addition of a phosphoprotein phosphatase reversed the isometric tension response and dephosphorylated P-light chain. At the higher Ca2+ concentration, P-light chain phosphorylation was found to have little effect on isometric tension. Fibers prepared and stored at -20 degrees C in a buffer containing MgATP, KF, and potassium phosphate incorporated 0.80 mol of phosphate/mol of P-light chain. Addition of phosphoprotein phosphatase to these fibers incubated at 0.6 microM Ca2+ caused a reduction in isometric tension and dephosphorylation of the P-light chain. There was no difference before and after phosphorylation of P-light chain in the normalized force-velocity relationship for fibers at the lower Ca2+ concentration, and the extrapolated maximum shortening velocity was 2.2 fiber lengths/s. Our results suggest that in vertebrate skeletal muscle, P-light chain phosphorylation increases the force level at submaximal Ca2+ concentrations, probably by affecting the interaction between the myosin cross-bridge and the thin filament.  相似文献   

16.
To determine the significance of actin isoforms in chemomechanical coupling, we compared tension and ATPase rate in heart myofilaments from nontransgenic (NTG) and transgenic (TG) mice in which enteric gamma-actin replaced >95% of the cardiac alpha-actin. Enteric gamma-actin was expressed against three backgrounds: mice expressing cardiac alpha-actin, heterozygous null cardiac alpha-actin mice, and homozygous null cardiac alpha-actin mice. There were no differences in maximum Ca(2+) activated tension or maximum rate of tension redevelopment after a quick release and rapid restretch protocol between TG and NTG skinned fiber bundles. However, compared with NTG controls, Ca(2+) sensitivity of tension was significantly decreased and economy of tension development was significantly increased in myofilaments from all TG hearts. Shifts in myosin isoform population could not fully account for this increase in the economy of force production of TG myofilaments. Our results indicate that an exchange of cardiac alpha-actin with an actin isoform differing in only five amino acids has a significant impact on both Ca(2+) regulation of cardiac myofilaments and the cross-bridge cycling rate.  相似文献   

17.
The phosphate (P(i)) dissociation step of the cross-bridge cycle was investigated in skinned rat ventricular myocytes to examine its role in force generation and Ca(2+) regulation in cardiac muscle. Pulse photolysis of caged P(i) (alpha-carboxyl-2-nitrobenzyl phosphate) produced up to 3 mM P(i) within the filament lattice, resulting in an approximately exponential decline in steady-state tension. The apparent rate constant, k (rho i), increased linearly with total P(i) concentration (initial plus photoreleased), giving an apparent second-order rate constant for P(i) binding of 3100 M(-1) s(-1), which is intermediate in value between fast and slow skeletal muscles. A decrease in the level of Ca(2+) activation to 20% of maximum tension reduced k (rho i) by twofold and increased the relative amplitude by threefold, consistent with modulation of P(i) release by Ca2+. A three-state model, with separate but coupled transitions for force generation and P(i) dissociation, and a Ca(2+)-sensitive forward rate constant for force generation, was compatible with the data. There was no evidence for a slow phase of tension decline observed previously in fast skeletal fibers at low Ca(2+), suggesting differences in cooperative mechanisms in cardiac and skeletal muscle. In separate experiments, tension development was initiated from a relaxed state by photolysis of caged Ca(2+). The apparent rate constant, k(Ca), was accelerated in the presence of high P(i) consistent with close coupling between force generation and P(i) dissociation, even when force development was initiated from a relaxed state. k(Ca) was also dependent on the level of Ca(2+) activation. However, significant quantitative differences between k (rho i) and k(Ca), including different sensitivities to Ca(2+) and P(i) indicate that caged Ca(2+) tension transients are influenced by additional Ca(2+)-dependent but P i-independent steps that occur before P(i) release. Data from both types of measurements suggest that kinetic transitions associated with P(i) dissociation are modulated by the Ca(2+) regulatory system and partially limit the physiological rate of tension development in cardiac muscle.  相似文献   

18.
The dependence of polarized fluorescence of rhodaminylphalloin specifically bound to F-actin and the tension developed by a fiber upon phosphorylation of myosin (18.5 kD) light chains as well as on the concentration of free Ca2+ was observed during the contraction of glycerinated rabbit skeletal muscle fibers. Still greater changes in the polarized fluorescence and higher values of tension were recorded for fibers with phosphorylated light chains at low (0.6 microM) Ca2+ concentrations as well as for those with dephosphorylated light chains at high (10 microM) Ca2+ concentrations. It is concluded that phosphorylation of myosin light chains modulates skeletal muscle contraction. The mechanisms of modulation involve conformational changes in F-actin.  相似文献   

19.
Diaphragm weakness commonly occurs in patients with congestive heart failure (CHF) and is an independent predictor of mortality. However, the pathophysiology of diaphragm weakness is poorly understood. We hypothesized that CHF induces diaphragm weakness at the single-fiber level by decreasing myosin content. In addition, we hypothesized that myofibrillar Ca(2+) sensitivity is decreased and cross-bridge kinetics are slower in CHF diaphragm fibers. Finally, we hypothesized that loss of myosin in CHF diaphragm weakness is associated with increased proteolytic activities of caspase-3 and the proteasome. In skinned diaphragm single fibers of rats with CHF, induced by left coronary artery ligation, maximum force generation was reduced by approximately 35% (P < 0.01) compared with sham-operated animals for slow, 2a, and 2x fibers. In these CHF diaphragm fibers, myosin heavy chain content per half-sarcomere was concomitantly decreased (P < 0.01). Ca(2+) sensitivity of force generation and the rate constant of tension redevelopment were significantly reduced in CHF diaphragm fibers compared with sham-operated animals for all fiber types. The cleavage activity of the proteolytic enzyme caspase-3 and the proteasome were approximately 30% (P < 0.05) and approximately 60% (P < 0.05) higher, respectively, in diaphragm homogenates from CHF rats than from sham-operated rats. The present study demonstrates diaphragm weakness at the single-fiber level in a myocardial infarct model of CHF. The reduced maximal force generation can be explained by a loss of myosin content in all fiber types and is associated with activation of caspase-3 and the proteasome. Furthermore, CHF decreases myofibrillar Ca(2+) sensitivity and slows cross-bridge cycling kinetics in diaphragm fibers.  相似文献   

20.
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号