共查询到20条相似文献,搜索用时 15 毫秒
1.
Christina V Jones Timothy M Williams Kenneth A Walker Hayley Dickinson Samy Sakkal Bree A Rumballe Melissa H Little Graham Jenkin Sharon D Ricardo 《Respiratory research》2013,14(1):41
Background
Macrophages are traditionally associated with inflammation and host defence, however a greater understanding of macrophage heterogeneity is revealing their essential roles in non-immune functions such as development, homeostasis and regeneration. In organs including the brain, kidney, mammary gland and pancreas, macrophages reside in large numbers and provide essential regulatory functions that shape organ development and maturation. However, the role of macrophages in lung development and the potential implications of macrophage modulation in the promotion of lung maturation have not yet been ascertained.Methods
Embryonic day (E)12.5 mouse lungs were cultured as explants and macrophages associated with branching morphogenesis were visualised by wholemount immunofluorescence microscopy. Postnatal lung development and the correlation with macrophage number and phenotype were examined using Colony-stimulating factor-1 receptor-enhanced green fluorescent protein (Csf1r-EGFP) reporter mice. Structural histological examination was complemented with whole-body plethysmography assessment of postnatal lung functional maturation over time.Flow cytometry, real-time (q)PCR and immunofluorescence microscopy were performed to characterise macrophage number, phenotype and localisation in the lung during postnatal development. To assess the impact of developmental macrophage modulation, CSF-1 was administered to neonatal mice at postnatal day (P)1, 2 and 3, and lung macrophage number and phenotype were assessed at P5. EGFP transgene expression and in situ hybridisation was performed to assess CSF-1R location in the developing lung.Results
Macrophages in embryonic lungs were abundant and densely located within branch points during branching morphogenesis. During postnatal development, structural and functional maturation of the lung was associated with an increase in lung macrophage number. In particular, the period of alveolarisation from P14-21 was associated with increased number of Csf1r-EGFP+ macrophages and upregulated expression of Arginase 1 (Arg1), Mannose receptor 1 (Mrc1) and Chemokine C-C motif ligand 17 (Ccl17), indicative of an M2 or tissue remodelling macrophage phenotype. Administration of CSF-1 to neonatal mice increased trophic macrophages during development and was associated with increased expression of the M2-associated gene Found in inflammatory zone (Fizz)1 and the growth regulator Insulin-like growth factor (Igf)1. The effects of CSF-1 were identified as macrophage-mediated, as the CSF-1R was found to be exclusively expressed on interstitial myeloid cells.Conclusions
This study identifies the presence of CSF-1R+ M2-polarised macrophages localising to sites of branching morphogenesis and increasing in number during the alveolarisation stage of normal lung development. Improved understanding of the role of macrophages in lung developmental regulation has clinical relevance for addressing neonatal inflammatory perturbation of development and highlights macrophage modulation as a potential intervention to promote lung development. 相似文献2.
Peng Sun Yuanyang Yuan Aihua Li Boan Li Xing Dai 《Histochemistry and cell biology》2010,133(2):213-221
Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific
cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary
stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary
development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor
cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to
systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14)
and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6+ and K8+/K14+ putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover,
we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during
the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary
epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic
origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins
as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation
in genetic studies of mouse mammary development. 相似文献
3.
4.
Matsuura O Kadomatsu K Takei Y Uchimura K Mimura S Watanabe K Muramatsu T 《Cell structure and function》2002,27(2):109-115
A heparin-binding growth factor, midkine, is the product of a retinoic acid-responsive gene. Since retinol plays critical roles in lung development and treatment of bronchopulmonary dysplasia, and midkine has been implicated in the maturation of lung explants and in cytoprotection, we herein examined midkine expression during postnatal development of the lungs and hyperoxic lung injury. Midkine protein transiently increased to a maximum level at around 4 days postnatal. Immunohistochemistry revealed that the amounts of midkine increased in resident alveolar cells, but not in smooth muscle cells or the large airway epithelium. If neonatal mice were exposed to >95% oxygen, lung development was impaired and midkine expression was suppressed. In contrast, when adult mouse lungs as well as in vitro cultured lung adenocarcinoma cells were exposed to hyperoxia, midkine expression was not affected. Furthermore, a pronounced induction of midkine by retinoic acid was observed in neonatal lungs. The results indicate that midkine expression is associated with postnatal lung development, but not necessarily with hyperoxic cell damage. 相似文献
5.
Expression of the SMADIP1 gene during early human development 总被引:21,自引:0,他引:21
Espinosa-Parrilla Y Amiel J Augé J Encha-Razavi F Munnich A Lyonnet S Vekemans M Attié-Bitach T 《Mechanisms of development》2002,110(1-2):187-191
There are four members of the platelet-derived growth factor (PDGF) family; PDGF-A, PDGF-B, PDGF-C and PDGF-D. Their biological effects are mediated via two tyrosine kinase receptors, PDGFR-alpha and PDGFR-beta, and PDGF-mediated signaling is critical for development of many organ systems. Analysis in adult tissues showed that PDGF-C was mainly expressed in kidney, testis, liver, heart and brain. During development, PDGF-C expression was widespread and dynamic, and found in somites and their derivatives, in kidney, lung, brain, and in several other tissues, particularly at sites of developing epidermal openings. PDGF-C may therefore have unique functions during tissue development and maintenance. 相似文献
6.
Changes in alpha-amylase (alpha-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1) of parotid gland were investigated during postnatal development of the rat. Modifications in amylase activity after birth allow the distinction of three stages which can be correlated with the morphologic development of the parotid gland. Significant sexual differences in the evolution of alpha-amylase activity were found. During the first stage (from birth to the 20th day) there is a higher increase in females, while males have a more pronounced increment in the second stage (from the 20th to the 30th day). By means of gel electrophoresis of parotid extracts, four molecular forms of amylase can be separated. The slowest migrating band (Form 1) is not detected at the initial stage. 相似文献
7.
We have attempted to show eventual modifications in the brain protein synthesis apparatus of rat during the first three weeks after birth. Through this time we noted a steady decrease (about 60%) in the free polysomes, when expressed relative to tissue weight. This decrease does not correlate with changes in the polysome profile, indicating that no loss in the efficiency of protein synthesis was involved. Translation in a reticulocyte lysate also failed to reveal differences. 相似文献
8.
9.
《Chronobiology international》2013,30(2):178-186
Early light experience influences the brain during development. Perinatal light exposure has an important effect on the development of the circadian system, although the role of quantity versus quality of light in this process is still unclear. We tested the development of the circadian rhythm of locomotor activity under constant bright light from the day of weaning, of six groups of rats raised under different light conditions during suckling. Results indicated that when rats received daily darkness during suckling (rats reared under constant darkness or light-dark cycles with dim or bright light) became arrhythmic when exposed to continuous bright light after weaning. However, those rats reared in the absence of darkness (constant dim or bright light, or alternating dim and bright light) developed a circadian rhythm, which was stronger and had a shorter period depending on the quantity of light received during suckling. Vasointestinal polypeptide immunoreactivity in the suprachiasmatic nucleus (SCN) was higher in those rats with weaker rhythms. However, no apparent differences among these groups were found in the melanopsin-expressing retinal ganglion cells, which provide the SCN with light input in the photoentrainment process. When bright light was shifted to dim light in three of the groups on day 57 after weaning, all of them generated a circadian rhythm with a longer period in those rats previously arrhythmic. Our results indicate the importance of the amount of light received at the early stages of life in the development of the circadian system and suggest that darkness is needed for the normal development of circadian behaviour. 相似文献
10.
Mehta M Ahmed Z Fernando SS Cano-Sanchez P Adayev T Ziemnicka D Wieraszko A Banerjee P 《Journal of neurochemistry》2007,101(4):918-928
The presence of serotonin 1A receptor (5-HT(1A)-R) in the hippocampus, amygdala, and most regions of the frontal cortex is essential between postnatal day-5-21 (P5-21) for the expression of normal anxiety levels in adult mice. Thus, the 5-HT(1A)-R plays a crucial role in this time window of brain development. We show that the 5-HT(1A)-R-mediated stimulation of extracellular signal-regulated kinases 1 and 2 (Erk1/2) in the hippocampus undergoes a transition between P6 and P15. At P6, a protein kinase C (PKC) isozyme is required for the 5-HT(1A)-R -->Erk1/2 cascade, which causes increased cell division in the dentate gyrus. By contrast, at P15, PKC alpha participates downstream of Erk1/2 to augment synaptic transmission through the Schaffer Collateral pathway but does not cause increased cell division. Our data demonstrate that the 5-HT(1A)-R -->Erk1/2 cascade uses PKC isozymes differentially, first boosting the cell division to form new hippocampal neurons at P6 and then undergoing a plastic change in mechanism to strengthen synaptic connections in the hippocampus at P15. 相似文献
11.
12.
Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1−/− C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1−/− mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1−/− mammary glands. Additionally, pseudopregnant Akt1−/− females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function. 相似文献
13.
14.
15.
DN Shelton H Fornalik T Neff SY Park D Bender K DeGeest X Liu W Xie DK Meyerholz JF Engelhardt MJ Goodheart 《PloS one》2012,7(7):e40312
Endometrial carcinoma is the most common gynecologic cancer, yet the mechanisms underlying this disease process are poorly understood. We hypothesized that Lef1 is required for endometrial gland formation within the uterus and is overexpressed in endometrial cancer. Using Lef1 knockout (KO) mice, we compared uterine gland development to wild-type (WT) controls, with respect to both morphology and expression of the Lef1 targets, cyclin D1 and MMP7. We characterized the dynamics of Lef1 protein expression during gland development and the mouse estrus cycle, by immunostaining and Western blot. Finally, we investigated the roles of cyclin D1 and MMP7 in gland and cancer formation in the mouse, and assessed the relevance of Lef1 to human cancer by comparing expression levels in cancerous and normal endometrial tissues. Lef1 upregulation in mouse endometrium correlates with the proliferative stages of the estrus cycle and gland development during the neonatal period. WT mice endometrial glands began to develop by day 5 and were easily identified by day 9, whereas Lef1 KO mice endometrial glands had not developed by day 9 although the endometrial lining was intact. We found that during gland development cyclin D1 is elevated and localized to the gland buds, and that this requires the presence of Lef1. We also noted that Lef1 protein was expressed at higher levels in endometrial cancers within mice and humans when compared to normal endometrium. Our loss-of-function data indicate that Lef1 is required for the formation of endometrial glands in the mouse uterus. Lef1 protein elevation corresponds to gland formation during development, and varies cyclically with the mouse estrus cycle, in parallel with gland regeneration. Finally, Lef1 is overexpressed in human and mouse endometrial tumors, consistent with it playing a role in gland proliferation. 相似文献
16.
Doretto S Malerba M Ramos M Ikrar T Kinoshita C De Mei C Tirotta E Xu X Borrelli E 《PloS one》2011,6(5):e19849
Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. 相似文献
17.
Neurotransmitter features in sympathetic neurons are subject to change during development. To better understand the neuroplasticity of sympathetic neurons during early postnatal ontogenesis, this study was set up to immunocytochemically investigate the development of the catecholaminergic, cholinergic, and peptidergic phenotypes in the stellate ganglion of mice and rats. The present study was performed on Wistar rats and Swiss mice of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, and 60-day-old). To this end, double labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), vasoactive intestinal (poly)peptide (VIP), neuropeptide Y (NPY), galanin (GAL), and somatostatin (SOM) was applied. The results obtained indicate that the majority of the neurons in the stellate ganglion of both species were TH-positive from birth onward and that a large part of these neurons also contained NPY. The percentage of neurons containing TH and NPY invariably increased with age up to 60 days postnatally. A smaller portion of the stellate ganglion neurons contained other types of neuropeptides and showed a distinct chronological pattern. The proportion of VIP- and ChAT-positive neurons was maximal in 10-day-old animals and then decreased up to 60 days of age, whereas the number of SOM-positive cells in rats significantly decreased from birth onward. In newborn rats, VIP-, ChAT- and SOM-positive neurons were largely TH-positive, while their proportions decreased in 10-day-old and older rats. Accordingly, the largest part of VIP-positive neurons also expressed SOM immunoreactivity at birth, after which the number of neurons containing both peptides diminished. The VIP- and SOM-positive cells did not contain NPY in any of the age groups studied. In rats up to 10 days of life, GAL-immunoreactive (-IR) neurons were scarce, after which their number increased to reach a maximal value in 30-day-old animals and then declined again. The SOM-reactive cells had the smallest size in all rats, while the largest neurons were those containing ChAT. In the mouse stellate ganglion, VIP- and ChAT-IR neurons were larger in comparison to NPY- and TH-IR cells. Our study further revealed some species differences: compared to mice the proportion of neurons containing TH and NPY was higher in rats at all ages under study. Furthermore, no GAL-immunostained neurons were found in mice and the number of SOM-positive cells in mice was limited compared to that observed in rats. In conclusion, the development of neurotransmitter composition is complete in rats and mice by their second month of life. At this age, the percentages of immunopositive cells have become similar to those reported in adult animals. 相似文献
18.
The Xenopus D7 gene codes for a novel protein whose expression is restricted to early development. D7 protein is synthesized for the first time during oocyte maturation (1988, Genes Dev. 2, 1296-1306). Injection of D7 RNA into the full-grown oocyte and its subsequent translation into D7 protein neither induced oocyte maturation nor affected the kinetics of hormone-induced maturation. Overexpression of D7 protein by 20-fold in the early Xenopus embryo by injection of D7 RNA into fertilized eggs did not affect subsequent development. Oocytes specifically lacking D7 mRNA were generated by oligodeoxynucleotide-mediated RNA destruction within the oocyte. Unfertilized eggs generated from such oocytes lacked detectable D7 protein, but nevertheless could be activated and fertilized. Embryos generated from such eggs, estimated to contain less than 5% of wildtype levels of D7 protein, developed normally up to the tailbud stage. Thus the D7 protein, the product of a maternal mRNA that is under strict translational repression in oocytes, appears not to be required for oocyte maturation, activation, fertilization or early embryonic development in Xenopus. 相似文献
19.
Chan T Kondow A Hosoya A Hitachi K Yukita A Okabayashi K Nakamura H Ozawa H Kiyonari H Michiue T Ito Y Asashima M 《FEBS letters》2007,581(14):2691-2696